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Abstract:
Background: Dengue fever  is  a  global  concern,  with  half  of  the  population at  risk.  Digital  Health  Interventions
(DHIs) have been widely used in Dengue surveillance.

Objective: The objective of this review is to identify DHIs that have been used in Dengue surveillance.

Methods: A systematic literature search was performed on three primary databases: PubMed, Scopus, and Google
Scholar. A total of 2637 studies, including duplicates, were found to be possibly pertinent to the study topic during
the electronic  search for  the  systematic  literature  review.  After  the  screening of  titles  and abstracts,  51  studies
remained eligible.

Results: The study analyzed 13 main categories of DHIs in Dengue surveillance, with Brazil, India, Sri Lanka, China,
and Indonesia being the top five countries. Geographic Information System was the most used DHIs, followed by
Machine Learning, Social Media, Mobile Applications, Google Trends, and Web Applications. DHIs were integrated,
as evidenced by the deployment of many DHIs simultaneously in a single Dengue surveillance program.

Conclusion: Future research should concentrate on finding more efficient ways to combine all available data sources
and approaches to improve data completeness and predictive model precision and identify Dengue outbreaks early.

Keywords:  Dengue,  Detection,  Digital  health  interventions  (DHIs),  Health  informatics,  Outbreak,  Prediction,
Surveillance.

© 2024 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

*Address correspondence to this author at the Doctorate Program of Medical and Health Science, Faculty of Medicine,
Public Health and Nursing, Universitas Gadjah Mada, Farmako Street Sekip Utara, Senolowo, Sinduadi, Mlati, Sleman,
Yogyakarta 55281, Indonesia and Department of Health Information and Services, Vocational College, Universitas Gadjah
Mada, TILC Building, Blimbing Sari, Caturtunggal Depok, Sleman, Yogyakarta 55281, Indonesia; Tel: +62852-7408-2829;
E-mail: markoferdiansalim@ugm.ac.id

Cite as: Salim M, Satoto T, D, Daniel D. Digital Health Interventions in Dengue Surveillance to Detect and Predict
Outbreak: A Scoping Review. Open Public Health J, 2024; 17: e18749445283264.
http://dx.doi.org/10.2174/0118749445283264240116070726

Received: September 20, 2023
Revised: December 30, 2023
Accepted: January 09, 2024

Send Orders for Reprints to
reprints@benthamscience.net

Published: January 19, 2024

https://openpublichealthjournal.com/
https://orcid.org/0000-0002-8487-5183
https://orcid.org/0000-0003-4443-4751
https://orcid.org/0000-0002-6068-5633
https://orcid.org/0000-0002-2664-2517
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:markoferdiansalim@ugm.ac.id%20
http://dx.doi.org/10.2174/0118749445283264240116070726
http://crossmark.crossref.org/dialog/?doi=10.2174/0118749445283264240116070726&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://openpublichealthjournal.com/


2   The Open Public Health Journal, 2024, Vol. 17 Salim et al.

1. INTRODUCTION
Dengue fever is a tropical infectious illness caused by

one  of  four  Dengue  virus  serotypes  (DENVs  1-4)  and
transmitted to humans by the bite of an infected mosquito
[1].  The  Aedes  aegypti  mosquito  and,  to  a  lesser  extent,
Aedes  albopictus  mosquito  are  the  primary  vectors  of
Dengue transmission and are found worldwide in tropical
and  subtropical  climates,  especially  in  urban  and  semi-
urban areas. This disease has serious public health, social,
and economic implications in many low and middle-income
countries (LMICs) [2, 3].

According  to  World  Health  Organization  (WHO),  the
increase  of  people  in  the  world  being  at  risk  due  to
urbanization  and  climate  change  whereby  increased
temperatures  and  rainfall  patterns  have  extended  the
range  of  Aedes  aegypti  and  albopictus  to  new  regions
globally where Dengue has not previously been endemic
[4]. Dengue continues to be the arbovirus with the highest
number of cases reported in the Region of the Americas,
with  outbreaks  that  occur  cyclically  every  3  to  5  years.
2023  is  the  year  with  the  highest  historical  record  of
Dengue cases, exceeding 4.1 million new infections. This
figure  exceeded  those  of  2019,  the  year  in  which  they
registered more than 3.1 million cases, including 28,203
serious cases and 1,823 deaths [5]. Despite an estimated
100–400 million infections every year, more than 80% of
them are generally mild and asymptomatic. Moreover, this
infection  can  cause  an  acute  flu-like  illness.  Sometimes
this  condition  develops  into  a  potentially  lethal
complication known as Dengue Shock Syndrome (DSS) [4,
6].

Several  strategies  have  been  implemented  to  reduce
Dengue fever mortality and morbidity following The Global
Plan for Dengue Prevention and Control 2012-2020 WHO.
Dengue mortality can be reduced by implementing early
case  identification  and  adequate  treatment  of  severe
cases,  as  well  as  reorienting  health  services  to  identify
early  cases  and  successfully  manage  Dengue  epidemics,
primary  health-care  worker  training,  and  appropriate
referral mechanisms. Dengue morbidity can be reduced by
improving  outbreak  prediction  and  detection  through
coordinated  epidemiological  and  entomological
surveillance; supporting the concepts of integrated vector
management,  and  implementing  locally  adapted  vector
control strategies, such as efficient management of home
and  urban  water  supplies.  Behavior  changes  brought
about by effective communication can support prevention
programs [7].

Surveillance, which provides the data required for risk
assessment and program direction, is another element of
Dengue  prevention  [8].  Surveillance  is  an  essential
component of any Dengue prevention and control program
because it provides the data required for risk assessment,
epidemic response, and program evaluation. Surveillance
can  make  use  of  both  passive  and  active  data  collection
methods. Surveillance activities should ideally encompass
monitoring  human  Dengue  cases,  laboratory-based
surveillance,  vector surveillance,  and environmental  risk
factors for Dengue epidemics. The epidemiological picture

of  transmission  risk  is  enhanced  and  expanded  by
surveillance  using  a  wide  range  of  data  sources,
depending  on  the  circumstances  under  examination  [9].

The  main  goal  of  Dengue  disease  surveillance  is  to
detect  and  predict  epidemic  activity  [9].  DHF  (Dengue
Hemorrhagic Fever) surveillance is carried out manually,
on paper, digitally, or electronically. Digital health, or the
use of digital technology for health, has developed as an
emerging practice sector for meeting health requirements
through  ordinary  and  creative  forms  of  information  and
communication technology (ICT). The term digital health
has evolved along with eHealth and other terms, which is
described as “the use of information and communication
technology to support health and health-related sectors”
[10].

In  disease  surveillance,  digital  health  interventions
(DHIs)  have  been  widely  implemented.  As  shown  by  the
detection of polio and Ebola epidemics, digital surveillance
can  improve  early  detection  and  response  to  worldwide
public  health  emergencies  and  should  be  viewed  as  an
essential  complement  to  existing  official  surveillance
mechanisms  [11].  Many  studies  have  applied  digital
surveillance to detect and predict Dengue outbreaks such
as  Google  Trends,  internet  search  engines,  social  media
platforms,  online  news,  geographic  information systems,
and others [12–14].

Moreover, in Dengue fever surveillance, many studies
have been conducted on DHIs to support policymaking in
the  prevention  and  control  of  Dengue  fever.  Since  each
DHI  has  different  objectives  for  its  Dengue  fever
surveillance initiatives, more information is required. For
instance, it takes a combination of several types of DHIs to
support  Dengue  surveillance  activities  comprehensively
from  data  collection  to  information  dissemination  for
policy support, so this study offers fundamental knowledge
for researchers in adopting and implementing appropriate
DHIs  in  the  future.  The  distribution  and  trend  of  DHIs
implementation also indicate the level of attention that has
been  shown  recently  by  scientists.  To  the  best  of  our
knowledge, no study systematically reviews this area. This
study aims to fill that gap. Therefore, the first aim of this
review is to identify digital health interventions that have
been applied in Dengue surveillance to detect and predict
outbreaks. The second aims to analyze data sources, study
locations, and purposes of DHIs in Dengue surveillance.

2. MATERIALS AND METHODS
The  scoping  review  was  conducted  based  on  Arksey

and  O’Malley’s  scoping  review  framework  [15].  The
literature search was conducted from June to  November
2022.  This  scoping  review  was  not  formally  registered
with  the  international  systematic  review  database
(PROSPERO).  It  was  not  required  to  register  scoping
reviews with PROSPERO at the time this text was written.

We define digital health interventions refer to the use
of  Information  and  Communication  Technology  (ICT)  to
support Dengue surveillance programs. It encompasses a
range  of  related  concepts  such  as  mobile  applications,
health informatics, desktop computer programs, websites,



Digital Health Interventions in Dengue Surveillance 3

artificial  intelligence,  machine  learning,  data  analytics,
and others that support Dengue surveillance both online
and offline.

2.1. Eligibility Criteria
The  scoping  review  focused  on  studies  that  used

information technology in Dengue surveillance to monitor,
early  detection,  predict,  and/or  forecast  Dengue
outbreaks.  The  inclusion  criteria  included:  (1)  Dengue
diagnosis  based  on  the  standard  WHO  definition;  (2)
Articles  published between January  2017 and November
2022 in English to capture the latest and relevant studies
because  technology  in  DHIs  rapidly  transforms;  (3)
Studies  focused  on  digital  health  interventions  or
implementation  of  health  information  technology  for
Dengue  surveillance.  The  exclusion  criteria  were:  (1)
Studies without original data, such as reviews, editorials,
guidelines, and perspectives articles; (2) Opinion papers,
conference proceedings, book abstracts, study protocols,
reflection  articles,  letters,  and  posters  due  to  the
limitation of the information; (3) Studies for which full-text
was not available; (4) Studies exclusively on entomological
(without  any  human data)  in  order  to  allocate  resources
effectively to human-related analyses and interventions.

2.2. Search Strategy
The search strategy was conducted through electronic

databases (PubMed, Scopus, and Google Scholar).  Three
categories were created for search terms: 1) Surveillance;
2)  Dengue;  and  3)  Information  Technology  are  the  first
three.  Despite  the  presence  of  this  option  in  the  search
command,  Medical  Subject  Headings  (MeSH)  were
employed  to  ensure  an  accurate  search.  Each  term  was
entered separately from the electronic database into the
advanced  search  field,  and  then  combinations  were
applied  using  the  basic  search  structure  “Surveillance”
AND  “Dengue”  AND  “Information  Technology”  (as
appropriate)  (Table  1).

We  imported  references  into  Mendeley  Reference
Manager and removed duplicates. The selection procedure

was divided into two stages. First, we screened titles and
abstracts  using  the  previously  mentioned  inclusion  and
exclusion criteria. Second, we examined the full text of the
articles  found in  the  first  phase.  Four  reviewers  worked
independently  on  the  screening  and  full-text  review.
Studies  were  selected  once  a  consensus  was  reached.

2.3. Data Collection Process
The full-text  selected  papers'  data  was  exported  into

Microsoft Excel®. We extracted the following details: title,
author, abstract, purpose, intervention type, study design,
main  results  publication  year,  setting/scenario,  journal,
and databases searched.

2.4. Data Extraction
A  data  extraction  form  was  constructed  using  a

Microsoft  Excel®  spreadsheet.  Each  text  was  reviewed
after being classified using the extraction form. There was
no formal assessment of the methodological quality of the
included articles following the standards for conducting a
scoping review; nonetheless, the quality of the papers was
defined  by  the  study  designs  that  were  eligible  for
inclusion.

2.5. Data Synthesis
The themes emerging from the data were analyzed and

discussed with the research team. Given the variety of the
literature,  descriptive  numerical  and  thematic  analyses
were offered as narrative summaries. We used Microsoft
Excel® to create the bar chart, pie chart, word cloud chart,
and map. A descriptive analysis was performed to specify
information  based  on  type,  themes,  the  trend  of  DHIs
research in Dengue surveillance, and location distribution
studies.  A  word  cloud  was  also  produced  to  detect
keywords  that  appeared  often  in  the  abstracts  of  the
publications  reviewed.  To  determine  the  most  popular
keywords  in  digital  health  interventions  on  Dengue
surveillance, the abstracts of all  articles were examined.
The word cloud graph displays the top 100 words from the
abstracts of the 51 articles that were chosen.

Table 1. The search strategy.

Database
Source Search Terms

PubMed

(Surveillance[Title/Abstract] OR “epidemiological surveillance”[Title/Abstract] OR “Public Health Surveillance”[Title/Abstract] OR “Electronic
Surveillance”[Title/Abstract] OR “Digital surveillance”[Title/Abstract] OR “Active Surveillance”[Title/Abstract] OR “Passive
Surveillance”[Title/Abstract] OR Report*[Title/Abstract] OR “Sentinel Surveillance”[Title/Abstract])
AND
(Dengue[Title/Abstract] OR “Dengue Fever”[Title/Abstract] OR “Dengue Hemorrhagic Fever”[Title/Abstract])
AND
(Technology[Title/Abstract] OR Information[Title/Abstract] OR Informatics[Title/Abstract] OR Digital [Title/Abstract OR Data[Title/Abstract]
OR “Information System”[Title/Abstract] OR “Information Management”[Title/Abstract] OR “Health Information”[Title/Abstract] OR “Health
Informatics”[Title/Abstract] OR “Public Health Informatics” [Title/Abstract] OR “Health Information Technology”[Title/Abstract] OR “Health
Information System”[Title/Abstract] OR “Health Information Management”[Title/Abstract] OR “Electronic Health Record”[Title/Abstract] OR
“Electronic Medical Record”[Title/Abstract] OR “Personal Health Record”[Title/Abstract] OR “Mobile Health”[Title/Abstract] OR “m-
health”[Title/Abstract] OR “e-health”[Title/Abstract] OR “Health Record”[Title/Abstract] OR “Medical Record”[Title/Abstract] OR
“Digital”[Title/Abstract] OR “Medical Informatics”[Title/Abstract] OR “Internet”[Title/Abstract] OR “Medical Informatics
Application”[Title/Abstract] OR Software[Title/Abstract] OR “Machine learning”[Title/Abstract] OR “Artificial intelligent”[Title/Abstract])
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Database
Source Search Terms

Scopus

TITLE-ABS-KEY((Surveillance OR “epidemiological surveillance” OR “Public Health Surveillance” OR “Electronic Surveillance” OR “Digital
surveillance” OR “Active Surveillance” OR “Passive Surveillance” OR Report* OR “Sentinel Surveillance”)
AND
(Dengue OR “Dengue Fever” OR “Dengue Hemorrhagic Fever”)
AND
(Technology OR Information OR Informatics OR Digital OR Data OR “Information System” OR “Information Management” OR “Health
Information” OR “Health Informatics” OR “Public Health Informatics” OR “Health Information Technology” OR “Health Information System”
OR “Health Information Management” OR “Electronic Health Record” OR “Electronic Medical Record” OR “Personal Health Record” OR
“Mobile Health” OR “m-health” OR “e-health” OR “Health Record” OR “Medical Record” OR “Digital” OR “Medical Informatics” OR “Internet”
OR “Medical Informatics Application” OR Software OR “Machine learning” OR “Artificial intelligent”))

Google
Scholar

Surveillance AND Dengue AND (Technology OR Electronic OR Digital OR Informatics OR Information OR m-health OR e-health OR “Health
Record” OR “Medical Record” OR application OR software OR “medical informatics”)

Fig. (1). Prisma flow diagram.

3. RESULTS AND DISCUSSION
A  total  of  2637  studies,  including  duplicates,  were

identified  during  the  electronic  search  as  potentially
relevant to the research question. Following the screening
of  titles  and  abstracts,  51  research  were  found  to  be
eligible  (Fig.  1).  The  main  reason  for  excluding  articles
was that they were not focused on digital health Dengue
surveillance,  entomological  studies,  review  articles,
conference  proceedings,  or  genetic/molecular  studies.

3.1.  Characteristic  Studies  by  Trends,  Theme,  and
Categories

Based on the publications reviewed, studies related to
DHIs in Dengue surveillance are published every year and
they tend to fluctuate (Fig. 2a, b). This can be a sign that
the increase in the need for dengue surveillance is related
to the burden of disease which also has an impact on the
number of studies related to DHIs. The implication is that
alternate  data  sources  for  Dengue  surveillance  can  be

(Table 1) contd.....
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found on digital platforms like social media and big data
on the internet. Through an integrated digital surveillance
program, policies for Dengue control and prevention can
be decided to be carried out precisely and speedily [16].

The most discussed DHIs in Dengue Surveillance were
Dengue, disease, data, health, system, cases, surveillance,
information, application, and outbreak (Fig. 2a). Dengue is
the subject of discussion in each article used, therefore it
has the utmost intensity.  The word cloud graph includes
some  words  that  are  strongly  related  to  digital  health,
including data, information, application, mobile, spatial or
GIS  (Geographic  Information  System),  tweets,  Google
Dengue Trends, and machine learning. This demonstrates
how data and information are crucial to digital health in
Dengue  surveillance  because  the  delivery  of  health
services  could  be  enhanced  by  improved  data.

The  data  analyzed  must  comply  with  the  rules  and
cannot  be  arbitrary  in  surveillance  activities.  The  three
fundamental  components  of  high-quality  data  in  public
health  surveillance  are  completeness,  accuracy,  and
timeliness. Data are complete when all cases are included
(no cases are missed) and all data variables for cases are
entered. When the information entered is correct, the data

is accurate. Data are timely when they are available and
delivered  when  required  [17].  In  practice,  data-driven
surveillance support depends on having access to the right
data, using the proper methods, and making the outputs
accessible  and  understandable  to  the  right  stakeholders
[18].

Another  theme  found  in  this  review  and  related  to
DHIs is spatial or GIS (Geographic Information System). It
is  undeniable  that  this  topic  has  long  been  used  for
disease mapping since it was first applied by John Snow, in
1854  [19,  20].  GIS  allows  researchers  to  relate  health,
environmental, and population data, thereby being able to
evaluate  and  quantify  the  relationship  between  health-
related  variables  and  environmental  risk  factors.
Additionally,  GIS  helps  anticipate  outbreaks,  including
early Dengue incidence site identification and future risk
estimations  [21,  22].  However,  the  application  of  GIS
technology  still  faces  several  obstacles,  such  as  limited
access  to  GIS  infrastructure,  lack  of  technical  and
analytical  expertise,  and  inconsistent  data  availability.
International  cooperation  is  possible  to  overcome  these
obstacles  through  knowledge  exchange  and  governance
[21].

Fig. 2 contd.....

       (a)  
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Fig. (2). (a) Word cloud about digital health interventions.
(b) Trend of the studies.

Other topics,  such as Google Trends,  internet search
engines, and Twitter were also found in this research. All
of  these  can  be  used  as  important  tools  for  dengue
surveillance.  Google Trends and internet  search engines
provide search query data related to dengue. This data is
then  extracted  for  dengue  surveillance  purposes.
Meanwhile,  Twitter  data  is  based  on  tweet  data  that
includes topics or keywords related to dengue, and is then
analyzed  according  to  dengue  surveillance  objectives
[23–26]. However, there is a need to incorporate untapped
possibilities  for  digital  surveillance,  and  present
applications can be scaled up through better integration,
validation,  and  regulatory  clarification  about  ethical
considerations.  Therefore,  a  hybrid  system  that  collects
data from conventional surveillance with data from search
queries,  social  media  posts,  and  crowdsourcing  can
improve the quality of Dengue surveillance activities [14,
27].

This  study  also  uncovered  other  themes  such  as
applications  and  mobile.  Mobile  phone  technology  has
been  applied  to  improve  arbovirus  management,
prevention, diagnosis, and surveillance over the past ten
years  [28].  Mobile  applications  for  Dengue  surveillance
have great promise for detection, reporting, and mapping
Dengue  fever  cases,  changing  attitudes  about  Dengue
fever by increasing knowledge and changing perceptions
of the disease, and disseminating and sharing information

about  DHF  among  the  general  public  and  healthcare
professionals  [29,  30].

Another interesting topic shown on the word cloud is
related to  the objectives  of  DHIs  in  Dengue surveillance
(Fig. 2a). The terms “detection,” “prediction,” “forecast,”
“monitoring,”  “model,”  and  “reported”  are  among  those
that  show  up.  This  indicates  that  the  use  of  DHIs  in
Dengue monitoring goes beyond just reporting tools and
focuses on additional analysis to develop a model that can
predict Dengue outbreaks. The term “machine learning,”
which  is  closely  related  to  prediction  modelling,  also
supports  this.

3.2. Digital Health Intervention Categories
This  study  found  DHIs  categories  as  shown  in  Fig.

(3a),  GIS  dominates  the  use  of  digital  health  in  Dengue
surveillance, (30%) followed by Machine Learning (13%),
Social  Media  (11%),  Mobile  Applications  (10%),  and
Google  Trends  (9%)  and  Web  Application  (9%).  The
interesting  thing  is  that  several  types  of  DHIs  are  used
simultaneously  to  support  one  Dengue  surveillance
activity, thus indicating the application of the integrated
concept.  For  example,  research  on  VazaDengue:  An
information  system  for  preventing  and  combating
mosquito-borne  diseases  with  social  networks  [31].  This
study  uses  at  least  4  DHI  categories,  namely  Web
applications, Mobile applications, Geographic Information
Systems, and Social media.
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Fig. (3). (a) Percentage of digital health categories and trends.
(b) Trends of DHIs on dengue surveillance.
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Fig. (4). Geographic distribution of studies.

Technological  advances  such  as  DHIs  in  dengue
surveillance  have  enabled  many  countries  to  integrate
surveillance  data  globally.  However,  international
institutions such as the World Health Organization (WHO)
must  set  standards  related  to  policies  or  regulations,
resources,  and  processes  to  integrate  surveillance  data
globally.  By  integrating  surveillance  data  for  dengue,
including  clinical,  entomological,  microbiological/
serological,  epidemiological,  meteorological,  and
environmental  information,  we  can  gain  a  holistic
understanding  of  the  dengue  situation  and  effectively
predict  and  respond  to  epidemics  [32–36].

This  study  found  13  different  DHIs  categories  in
Dengue surveillance with annual trends (Fig. 3b). GIS is
consistently used in Dengue fever surveillance every year.
However,  there  is  an  interesting  thing,  namely  machine
learning  that  has  begun to  appear  in  the  last  2  years  in
Dengue  surveillance.  This  possibility  is  related  to  the
desire of researchers to predict Dengue incidences. With
the use of ICT and other technologies, machine learning is
becoming a crucial approach in the field of digital health
[37, 38].

3.3.  Geographical  Distribution  of  Digital  Health  in
Dengue Surveillance Studies

Fig. (4) displays the distribution of the article sites that
were  chosen  for  a  study  concerning  the  use  of  digital
health in Dengue surveillance around the globe. According

to  the  papers  analyzed,  Brazil  (10  articles),  India  (8
articles),  Sri  Lanka  (6  articles),  China  (4  articles),  and
Indonesia  (4  articles)  are  the  top  5  countries  for  using
DHIs in Dengue surveillance. The articles are spread out
throughout tropical nations, as seen on the map (Fig. 4).
We  found  that  a  high  number  of  publications  in  these
countries correlated with a high Dengue prevalence. For
example, in Brazil [39, 40], India [41], Sri Lanka [42, 43],
China [44, 45], and Indonesia [43] which are also known
as Dengue endemic countries.

Additionally, if we look deeper into the DHIs utilized in
the top 5 countries, we find that they differ substantially.
According  to  this  study,  social  media  (Twitter)  is  more
dominantly  discussed  (5  articles)  in  Brazil,  while  GIS  is
more dominantly discussed in India (5 articles). Sri Lanka
also  discusses  GIS  (2  articles)  and  Mobile  Apps  (2
articles). Machine learning (3 articles) and internet search
engines (3 articles) dominate in China. Lastly, there is no
dominant  force  in  Indonesia;  each article  discusses  GIS,
mobile apps, machine learning, and social media (Twitter).

3.4. The Purpose of DHIs in Surveillance Dengue
The purpose of the DHIs in these articles varies greatly

depending  on  the  type  of  DHIs,  such  as  to  identify  risk
areas,  predict  Dengue  cases,  develop  an  early  warning
model, assist in disease monitoring and surveillance, track
Dengue  case  numbers,  and  others.  Forecasting  or
predicting the incidence of Dengue is the objective that is
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most  frequently  discussed.  However,  there  is  an
interesting research objective that is not widely discussed,
namely  the  use  of  Twitter  data  to  measure  transmission
based on human behaviors and movement. An algorithm is
created  to  generate  a  dynamic  mobility-weighted
incidence index using geolocated data from Twitter (MI).
According to this study, the MI index can improve timely
decision-making  within  the  public  health  system  and  is
useful  and  significant  for  Dengue  surveillance  and  early
warning systems [46].

This review found various research designs mentioned

in  these  review  articles  such  as  spatial  analysis,  cross-
sectional  studies,  mixed  method  studies,  design  and
development  studies,  big  data  analytics,  data  analytics,
and ecological  studies.  The research design that  is  most
widely used in researching DHIs in Dengue surveillance is
the  spatial  analysis  and  this  relates  to  GIS  as  the  most
discussed  DHIs  category  in  the  previous  paragraph.
Furthermore, the most frequently used data sources, both
conventional  and  digital,  are  surveillance  data,  climate
data,  internet  big  data,  social  media  data,
sociodemographic  data,  and remote  sensing image data.
More detailed information can be seen in Table 2.

Table 2. Digital health purposes in dengue surveillance.

No. Study/Refs. Digital Health
Interventions Data Sources Types of Studies Purposes

1 Ashby et al. 2017 [47] Geographic Information
System

Surveillance data,
population data, remote

sensing data
Spatial analysis To identify risk areas of Dengue fever

2 Guo et al. 2017 [48] Internet Search Engines,
Machine learning

Surveillance data,
meteorological data,
demographic data

Data Analytics To develop an accurate Dengue prediction
model

3 Li et al. 2017 [49] Internet Search Engine
Baidu website,

surveillance data,
meteorological data,
demographic data

Data Analytics
To develop an early warning model by

integrating query data from the internet into
traditional surveillance data

4 Lwin et al. 2017 [50] Mobile applications Real-time data from the
mobile app Development study

To digitize form completion and collect site
visit information, real-time surveillance of

Dengue outbreaks, infographics, and
education

5 Marques-Toledo et al.
2017 [51] Social media

Surveillance data, Twitter
data, sociodemographic
data, big data Google,

Wikipedia data
Data Analytics

To evaluate and demonstrate the utility of
tweet modelling in Dengue estimate and

forecasting

6 Sirisena et al. 2017 [22] Geographic Information
System

Meteorological data,
surveillance data Spatial analysis

To map and evaluate the spatial and temporal
distribution of Dengue in Sri Lanka from 2009

to 2014, and to investigate the relationship
between climatic factors and Dengue

incidence

7 Strauss et al. 2017 [24] Google Trends Big data Google,
Surveillance data

Analysis trend/ time
series

To compare the accuracy of GDT with
traditional surveillance systems in Venezuela

8 Valson et al. 2017 [52] Geographic Information
System Meteorological data Spatial analysis

To analyze the spatiotemporal clustering of
Dengue cases and their climatic and

physiological environmental correlations

9 Yang et al. 2017 [53] Google Trends Big data Google Data Analytics
To generate near-real-time Dengue case

estimations in five countries/states: Mexico,
Brazil, Thailand, Singapore, and Taiwan

10 Manogaran et al. 2018
[54]

Big data, Geographic
Information Systems Meteorological data Data Analytics

To propose a big data-based surveillance
system that analyses spatial climate big data
and performs continuous monitoring of the

correlation between climate change and
Dengue

11 Ho et al. 2018 [55] Google Trends Big data Google,
Surveillance Data Data Analytics

To evaluate the health-seeking behavior based
on Dengue-related search queries and to
assess the temporal association between

weekly GDT and Dengue occurrence

12 Hussain-Alkhateeb et al.
2018 [56] Web applications

Meteorological,
epidemiological, and

entomological indicator
Development study To detect potential Dengue epidemics and

initiate early response activities

13 Rizwan et al. 2018 [57]
Web applications,

Geographic Information
Systems

Surveillance data Design and
development study

To assist in disease monitoring and
surveillance

14 Sousa et al. 2018 [31]
Web applications, Mobile
applications, Geographic

Information Systems,
Social media

Twitter database Design and
development study

To assist in Dengue monitoring and
surveillance
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No. Study/Refs. Digital Health
Interventions Data Sources Types of Studies Purposes

15 Villanes et al. 2018 [58] Text mining Online news Text mining To describe, analyze and predict Dengue cases

16 Babu et al. 2019 [59]
Mobile applications,

Geographic Information
Systems

Surveillance data Development study
To upload surveillance data, collect key
environmental parameter data, collect

relevant information from the community, and
generate dynamic risk maps.

17 Jain et al. 2019 [60]
Machine learning,

Geographic Information
System

Meteorological data,
clinical data,

socioeconomic data, and
the data encoding spatial

Big Data Analysis To forecast the occurrence of Dengue fever
within a geographical area

18 Lwin et al. 2019 [61] Mobile applications Surveillance data Design and
development study

To increase the flow of information and
improve Dengue surveillance, with the

ultimate goal of reducing disease spread

19 Ocampo et al. 2019 [62]
Mobile applications,

Geographic Information
Systems, Web Based

Application
Surveillance data Design and

development study

To facilitate the capture and analysis of
epidemiological information, mapping,

visualization in graphical reports, real-time
monitoring, and risk stratification.

20 Zhang et al. 2019 [63] Text mining Online news Big Data Analysis
To track Dengue case numbers and provide

near real-time reporting on outbreak
development

21 Guo et al. 2019 [64]
Internet Search Engines,
Geographic Information

Systems, Machine
Learning, Social media

Surveillance data, social
media data, climate data, Development study

To develop an ensemble penalized regression
algorithm (EPRA) to begin near-real-time

predictions of the Dengue epidemic trajectory

22 Ledien et al. 2019 [65] Desktop application Surveillance data Development study To identify appropriate tools for improving the
early warning system and preparation

23 Mizzi 2019 [66] Google trends, social
media Online data Data Analytics To forecast Dengue incidence

24 Ramadona et al. 2019
[46] Social media Online data Development study

To design an algorithm to estimate a dynamic
mobility-weighted incidence index (MI), which

assesses the level of exposure to virus
importation in any particular area, to quantify
the Dengue virus importation pressure in each

study neighborhood monthly

25 Rangarajan et al. 2019
[67]

Electronic Medical
Records, Google Trends

Medical Records of
Patient, online data Data Analytics To forecast Dengue incidence

26 Souza et al. 2019 [68] Social media, Geographic
Information Systems Online data Data Analytics To create two probability models to

characterize high-risk areas

27 Damayanti et al. 2020
[69] Machine learning Surveillance data Big Data Analysis To predict the occurrence of Dengue

28 Faridah et al. 2020 [70] Web applications Surveillance data Evaluation study To provide surveillance data, visualize, report,
and support decision making

29 Herbuela et al. 2020 [29]
Mobile application,

Geographic Information
System

Real-time data from the
mHealth app

Design and
development study

o enhance awareness, improve knowledge,
and change attitudes about Dengue fever,

health-seeking behavior, and intent-to-change
behavior on Dengue fever prevention among

users

30 Somboonsak 2020 [71]
Mobile application,

Geographic Information
System

Patient data from the
Bureau of vector-borne

diseases
Development study To create predictions and alert people via

smartphone

31 Amin et al. 2020 [72] Machine learning, social
media Social media data Data Analytics To predict and monitor the epidemic outbreak

32 Khalique et al. 2020 [73] Geographic Information
System, data mining Surveillance data Data Analytics To detect significant hotspots over a region to

implement sentinel surveillance

33 Faridah et al. 2021 [74] Geographic Information
System Surveillance data Spatial analysis

To offer strategic information for the Dengue
management program, to predict potential
Dengue outbreaks, to improve information

needed for effective planning, and to
investigate the demographic pattern of

Dengue cases
34 Gulley et al. 2021 [75] Electronic Medical Record Medical Record of Patient Data Analytics To assess temporal and demographic factors

35 Herbuela et al. 2021 [76] Mobile applications Respondent Cross-sectional
mixed method study

To provide early detection of disease
outbreaks

36 Parikh et al. 2021 [77]
Web-based, Geographic

Information System,
Machine Learning

Database: WHO, PAHO,
World Bank, and Gideon

Design and
development study

To detect the infectious disease re-emergence
(Dengue)

37 Provenzano et al. 2021
[78] Wikipedia Trends Data from Wikipedia Cross-sectional study To assess the temporal relationship between

Wikitrends and traditional surveillance data

(Table 2) contd.....
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No. Study/Refs. Digital Health
Interventions Data Sources Types of Studies Purposes

38 Ramesh et al. 2021 [79] Geographic Information
System Surveillance data Cross-sectional study To investigate the correlation between Dengue

cases and vector indices

39 Ranwala et al. 2021 [80] Web applications Surveillance data Development study
To provide an early warning and response

system for Dengue, as well as to supplement
existing surveillance

40 Tasnim et al. 2021 [81] Data Mining, Machine
Learning Online news Data analytics/ Data

mining
To uncover useful information and create a

Dengue news surveillance system

41 Withanage et al. 2021
[82]

Geographic Information
System Data from Survey Cross-sectional study To detect risk hotspots of Dengue

42 Lin 2022 [83] Geographic Information
System Surveillance data Spatial analysis To identify the cluster and explore different

routes of epidemic propagation

43 Al-Nefaie et al. 2022 [84] Geographic Information
System Surveillance data Cross-sectional study

To investigate the geographic patterns of
Dengue cases to see if there is a correlation
between the following environmental factors

and Dengue fever

44 Baak-Baak et al. 2022
[85] Machine learning Surveillance data Data Analytics To conduct a spatial and temporal analysis of

Dengue cases and deaths in Mexico

45 Carabali et al. 2022 [86] Geographic Information
System Surveillance data Spatial analysis

To quantify the contribution of the area- and
observed case-specific variables while

simultaneously analyzing the geographical
distribution

46 Chang et al. 2022 [87] Machine learning Email Database Data Analytics To improve the efficiency of monitoring the
epidemic situation in Southeast Asia

47 Harsha et al. 2022 [88] Geographic Information
System

Surveillance data, census
data, satellite image data Spatial analysis To identify the Dengue risk areas

48 Koplewitz et al. 2022 [89] Google trends, machine
learning

Epidemiological data,
weather data, and big data

Google
Big Data Analytics To estimate Dengue incidence

49 Masrani et al. 2022 [90] Geographic Information
System Surveillance data Spatial analysis To examine changes in Dengue case trends

and spatial patterns

50 Roster et al. 2022 [91] Machine learning Surveillance data Data Analytics
To create a model for forecasting monthly

Dengue cases in Brazilian cities one month in
advance

51 Santana et al. 2022 [92] Geographic Information
System Surveillance data Ecological Study

To explore the spatiotemporal dynamics of
Dengue-related mortality and to identify

potentially linked factors.

Based  on  the  objectives  of  these  DHIs  for  Dengue
surveillance system, they are very relevant from the ONE
Health  perspective,  especially  for  effective  dengue
prevention  and  control  strategies.  The  ONE  Health
perspective  recognizes  the  interconnectedness  between
human, animal, and environmental health. By integrating a
surveillance system into the dengue intervention strategy,
information  on  clinical  cases,  vector  presence,  and
environmental conditions can be effectively monitored and
analyzed to  detect  and respond to  outbreaks  in  a  timely
manner.  This  integrated  approach  would  involve  linking
clinical  care,  vector  and  virus  surveillance,  and
environmental  surveillance.  This  integration  would  also
involve  engaging  community  members  and  stakeholders
from sectors not typically involved in disease control. By
integrating  surveillance  systems  into  the  dengue
intervention strategy, we can improve the ability to detect
and  monitor  the  spatial  and  temporal  distribution  of
dengue cases, identify high-risk areas for intervention, and
establish alert thresholds for outbreaks [93–95].

3.5. Future Digital Health Interventions on Dengue
Surveillance

This  study  provides  several  recommendations  for
future DHI research on Dengue surveillance, specifically

regarding topics, objectives, and methodologies. First, we
advise  that  studies  on  machine  learning,  big  data,  data
mining, and other fields focus on predicting or forecasting
upcoming  Dengue  outbreaks  using  a  spatiotemporal
approach. With a spatiotemporal approach, we will know
when  and  where  there  is  an  increase  in  Dengue  cases
(outbreaks).  This  is  closely  related  to  the  condition  of
predictors  of  Dengue  events,  which  always  change
dynamically,  such  as  environmental  conditions,  climate,
mosquitoes  (agents),  humans  (host),  and  others.  The
second point is related to the implementation method, our
recommendation is to combine and integrate surveillance
data  sourced  between  conventional  surveillance  and
digital  surveillance  so  the  accuracy  can  be  relied  upon.
Finally,  researchers  can  use  data  available  on  digital
platforms  for  Dengue  surveillance  purposes.

Furthermore,  we  recommend  researchers  who  will
conduct research or develop DHIs for Dengue surveillance
to  leverage  vaccination  data  as  a  data  source.  The
utilization of vaccination data is an essential dimension of
surveillance for Dengue, especially in areas where Dengue
vaccines  have  been  introduced.  However,  based  on  the
studies  we  reviewed,  no  articles  were  found  that  used
vaccine  data  as  a  source  of  DHIs  data.

(Table 2) contd.....
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4. LIMITATIONS
This  review has  certain  limitations.  First,  because  of

the wide scope of this study, the knowledge gap in DHIs
on Dengue surveillance is also not very detailed, i.e., there
are no specific categories of DHIs. Future study reviews
may  focus  on  a  narrower  scope  to  identify  gaps  at  a
deeper level; for example, the review may simply focus on
the topic of machine learning and identify knowledge gaps
on  this  topic.  Second,  neither  the  risk  of  bias  nor  the
quality of the research reviewed were evaluated. So, the
topic or theme may have been studied before but we don't
have  the  quality  of  the  study.  Therefore,  if  you  wish  to
research  the  same  topic  or  theme,  we  recommend
studying past studies carefully and designing their studies
on  top  of  previous  studies,  taking  also  into  account  the
risk of bias and the quality of previous studies. Finally, this
research  can  be  used  as  a  reference  in  researching  and
developing DHIs for Dengue surveillance according to the
aims and needs of researchers.

CONCLUSION
This review has demonstrated the use of DHIs across

tropical  countries  and  the  top  5  countries  were  Brazil,
India,  Sri  Lanka,  China,  and  Indonesia.  There  were  13
different  categories  of  digital  health  and  GIS  dominates
the use of digital health in Dengue surveillance followed
by Machine Learning, Social Media, Mobile Applications,
Google  Trends,  and  Web  Applications.  A  single  Dengue
surveillance  program  uses  various  DHIs  simultaneously,
indicating  that  the  use  of  digital  health  was  integrated.
Future  digital  health  on  Dengue  surveillance  should
explore the synergies across various combinations due to
the significant emphasis on integrated health systems and
interoperability to decide which packages of digital health
are the most effective and efficient. Recommendations for
future  research  should  focus  on  how  to  leverage
vaccination data and integrate all  available data sources
and  methodologies  to  increase  data  completeness  and
predictive model accuracy so that Dengue outbreaks can
be detected earlier.
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