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Abstract:

Background:

In an epidemiological study, disease mapping models are commonly used to estimate the spatial (or temporal) patterns in disease risk and to
identify high-risk clusters, allowing for health interventions and allocation of the resources. The present study proposes a hierarchical Bayesian
modeling approach to simultaneously capture the over-dispersion due to the effect of varying population sizes across the districts (regions), and the
spatial auto-correlation inherent in the childhood mortality at districts (state) level in Nigeria.

Methods:

This cross-sectional study was based on 31842 children data extracted from the 2013 Nigeria Demographic and Health Survey (DHS). Of these
children, 2886 died before reaching the age of five years. A Standardized Mortality Ratio (SMR) was estimated for each district (state) and mapped
to highlight the risk patterns of the child mortality. Generalized Poisson regression models were formulated with random effects to estimate the
mortality risk and then explored to investigate the relationship of under-five child mortality and the regional risk factors. The random effects are
formulated to reflect the potential tendency of “neighbouring” regions to have similar risk patterns and the spatial heterogeneity effect was used to
capture geographical inequalities in the mortality outcomes. The models were implemented using a full Bayesian framework. All model parameters
were estimated in WinBUGS via Markov Chain Monte Carlos (MCMC) simulation techniques.

Results:

The results showed that of the economically deprived households, 2.088: 95% CI (1.088, 3.165) were significantly associated with childhood
mortality,  while unhygienic sanitation and lack of  access to improved water  sources were positively associated with child mortality,  but  not
statistically significant at 5% probability level. The geographical variation of the under-five mortality prevalence was found to be attributed to 69%
clustering and 31% was due to spatial heterogeneity factors. The predicted probability maps identified clusters of high risk mortality in the northern
regions and low prevalence of concentrated mortality in the south-west regions of Nigeria.

Conclusion:

The results demonstrated the flexibility of the approach that explored the geographical variation in the potential risk factors of child mortality and
that  it  provides  a  better  understanding  of  the  regional  variations  of  mortality  risks.  Nonetheless,  both  representations  can  help  to  provide
information for the initiation of public health interventions.
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1. INTRODUCTION

Despite remarkable growth recorded by many economies
in the last two decades, many developing countries have failed
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to attain the target Millennium Development Goals (MDGs 1)
four(4),  the  (reduction  of  under-five  mortality  by  two-thirds
between 1990 and 2015) and seven (7),  the targets  for  water
and sanitation in urban. Five countries accounted for half of the
global  infant  mortality  with  Nigeria  being  the  third  largest
contributor to the under- five mortality rate among children in
sub-Saharan Africa [1, 2]. In 2013, the mortality rates for the
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five  countries  were:  India  (24%),  Pakistan  (10%),  Nigeria
(9%),  the  Democratic  Republic  of  Congo  (DRC)  (4%)  and
Ethiopia  (3%)  as  reported  in  [3].  According  to  a
UNICEF/World  Bank  report,  the  prevalence  of  high  child
mortality  in  Africa  is  concentrated  in  the  four  sub-Saharan
countries of Malawi, Nigeria, Tanzania and Zambia. In 2003,
the mortality rates among children less than five years old were
estimated  at  187  per  1000  live  births  for  Malawi,  183  for
Nigeria,  165  for  Tanzania,  and  202  for  Zambia,  which  are
among the highest in the world [4].

Globally,  about  a  billion  people  still  lack  access  to
improved  drinking  water  and  approximately  2.5  billion  lack
improved toilet facilities, which are major causes of diarrhoea
infections,  as  reported in  [5,  6].  Unimproved hygiene during
food  preparation,  contaminated  water,  open  defecation  and
improper faeces disposal could also result in diarrhoea among
children,  which  globally  accounts  for  approximately  1.4
million  child  deaths  each  year  [6,  7].  In  a  study  recently
conducted by Black et al. [8], it was reported that an estimated
8.8 million children died worldwide from infectious diseases
and about 68% (5.970 million) death was caused by diarrhoea.
However, Aiello et al.  [9], previously reported that access to
improved water and sanitation can lead to a reduction in cases
of child diarrhoea and childhood mortality rates.

The  major  contributory  cause  of  child  mortality  is
attributed  to  individual  family  poverty  levels  or  poor
household’s environments, highly concentrated in rural areas or
slums in big cities [10, 11]. The household poverty and poor
environments could exacerbate the problems of poor health and
disease  prevalence  among  children,  and  hence,  the  high
mortality risks.  It  has been suggested that  health inequalities
not  only  reflect  the  poor  health  of  the  most  disadvantaged
people,  but  also  the  apparently  limitless  health  benefits
associated  with  rising  socioeconomic  status  [7,  12].

A  good  number  of  studies  have  investigated  the  health
inequality  of  sub-  populations  from  the  perspective  of
geography,  epidemiology,  and  public  health  showing  that
where  people  live  significantly  affects  their  health  outcomes
are  well  detailed  in  the  literature  [13,  14].  Some  studies
commonly employ disease mapping models and applications.
A  wide  range  of  these  studies  include  Sudden  Infant  Death
syndrome (SID) by [15], lip cancer in Scotland by [16], child
mortality by [17], and stomach and bladder cancers in Missouri
by  [18].  Other  studies  have  found  significant  associations
between  proximity  to  industrial  sites  and  leukemia  and
lymphoma as reported in [19]. Recently, a study conducted by
[20]  on  congenital  anomalies  and  total  cancer  mortality  has
shown  that  the  diseases  were  found  to  be  associated  with
waste-related  environmental  pollution.

The challenge of the geographical analysis of health is that
it  has  to  deal  with  methodological  uncertainties  as  well  as
social  and  political  issues.  Methodological  uncertainties  are
caused by issues of ecological fallacy, scale, Modifiable Areal
Unit  Problems  (MAUP)  and  spatial  autocorrelation  [21,  22].
The problems can be inherent in making inference about sub-
population  or  area  characteristics  as  individual  within  the
population. The statistical issues with disease mapping models
involve small  area estimations of aggregated data over small
area requiring taking into account local spatial correlation [23,
24], who states that data sparseness is a major problem in small

area analysis, especially when it involves rare diseases. A small
number of observed and expected disease occurrences at health
unit,  district  or  regional  level  can  lead  to  unstable  risk
estimates or unusual relative risk estimates [25]. To handle the
problem of over-dispersion and sparsity, random effect models
are  commonly  introduced  into  the  models  to  deal  with  the
problems arising from high varying population sizes of areas
with count data, which are spatially aggregated over regions as
suggested in several studies [26 - 28].

This  study  therefore  used  an  exploratory  method  to
estimate the SMR of each state (district) in Nigeria and mapped
it onto the geographical regions to highlight unusual clusters of
low  (high)  child  mortality  in  the  country.  The  study  then
proposed  Bayesian  hierarchical  models  to  capture  the  un-
measured random heterogeneity effects in child mortality data
and estimated the geographical  inequalities  of  the under-five
mortality prevalence across the districts (states). The statistical
inference was performed within a full Bayesian framework.

The paper  is  structured in the following order.  Section 1
provides the background of the study relating to environmental
risk factors of child mortality. In Section 2, the study discusses
the study design and data collection procedure, and the disease
mapping models, including exploratory data analysis. Section 3
described the Bayesian hierarchical models within generalized
linear  mixed  models.  In  Section  4,  the  proposed  models  are
applied  to  under-five  mortality  rates  from  the  2013  Nigeria
DHS.  Section  5  presents  the  discussion  and  the  concluding
remarks of the present study.

2. MATERIALS AND METHODS

2.1. The Data Exploration

The common sources of data for cause-specific mortality
include vital registration systems, sample registration systems,
nationally  representative  household  surveys  and  sentinel
Demographic  Surveillance  Sites  (DSS)  for  epidemiological
studies.  With an exception of a few countries,  such as South
Africa, reliable and functioning vital registration systems have
been presented a challenge in supporting attribution of causes
of  child  death  in  many  low-middle  income  countries,
particularly  in  sub-  Saharan  Africa  [29,  30].

The  main  source  of  data  for  researchers  to  guide  policy
makers in a developing country such as Nigeria is the National
DHS  conducted  by  the  Data  Measure  program.  The  United
States  Agency  for  International  Development  (USAID)  has
provided  the  technical  assistance  and  funding  to  conduct
surveys  in  several  developing  countries,  thereby  promoting
global  understanding  of  public  health.  The  DHS  program
collects  survey  data  nationally  on  a  variety  of  socio-
demographic  and  health  related  issues.  The  survey  collected
information  about  the  background  of  the  respondents,
specifically collected information on fertility levels, marriage,
fertility  preference,  awareness  and  use  of  family  planning
methods,  child  mortality  and  child  nutrition.  Detailed
information  and  procedures  about  the  data  collection,  and
questionnaires  have  been  published  elsewhere  by  [31].

The 2013 NDHS survey conducted by the DHS measure
used  a  multi-stage  cluster  design  consisting  of  40,320
households in 904 clusters with 372 in urban areas and 532 in
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Fig. (1). Map of Nigeria showing 37 districts (36 states and the Federal Capital Territory (FCT), Abuja).

rural areas. The survey successfully interviewed 38,948 women
occupied  in  38,  520  households  nested  in  886  clusters.  This
yielded  a  household  response  rate  for  women  of  99%.  Data
extracted from the 2013 NDHS for the present study are: the
number of children born between 2008 and 2013, the number
of children alive and counts of child deaths at the time of the
survey,  the  proportion  of  poorest  and  poor  households,  the
number of cases (children) experiencing diarrhoea two weeks
prior  to  the  survey,  the  number  of  households  using  solid
cooking fuels such as, coal, charcoal, fire wood, cow dung and
agricultural crop residues.

For  the  purpose  of  the  present  study,  Fig.  (1)  shows  the
geographical map of Nigeria showing 36 states (districts) and
the Federal Capital Territory, Abuja. Nigeria comprises of six
geopolitical  regions;  North-East,  North-West,  North-Central,
South-East,  South-South,  and  South-West  which  are  sub-
divided  into  36  administrative  states  and  the  Federal  Capital
Territory  (FCT).  The  population  groupings  within  the  geo-
political regions and states are relatively homogeneous. Also,
the people's cultural beliefs such as the demographic charac-
teristics, arid environment factors and socio-cultural structures
are considered similar within the geopolitical zones and states.

In  disease  mapping,  the  first  step  is  the  removal  of  the
effect  of  the  confounding  factors  on  the  risk  estimate  in  the
study  population  through  distribution  standardization.
Standardization  of  mortality  rates  or  disease  incidence  is  a
basic tool in both demography [32] and epidemiology [33, 34].
The  most  frequently  used  method  in  epidemiology  is  the
traditional method for estimating the relative risk is the internal

standardization method, which calculates the expected disease
counts  as  functions  of  the  observed  numbers  of  cases.
However,  such  models  are  regarded  as  incoherent  and  not
generative  probabilistically  according  to  [35],  because  the
observed  count  appears  on  both  sides  of  the  equation.

Consider the death counts, Yk aggregated data over a state
(district),  say,  37  (k  =  1;:::  ;  37)  states,  where  the  mother,  k
resides in Nigeria. In this study, the SMR is calculated as

(1)

and

In  equation  (1),  Yk  is  a  random variable  representing  the
number  of  observed  cases  (under-five  deaths)  in  each  kth

state(district) and nk represents the number of children at risk
(number  of  under-five  children  in  each  state,  k).  In  addition
SMRk  is  calculated  as  the  ratio  of  observed  number  of  child
death  cases  to  the  expected  number  of  cases  in  the  kth  state,
representing  the  risk  of  each  kth  area  (state).  Whenever  the
value of SMR is greater (lower) than one (1), it indicates that
the  area  (state)  k  has  a  higher  (lower)  risk  than  the  average
disease risk of the whole region. For example, for SMRk, it can
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be  said  that  area  k  has  a  25%  higher  risk  of  the  disease
(childhood morbidity). These quantities SMR are plotted as a
crude map. This estimator is unbiased, and is frequently used
by epidemiologists. However, this estimate is based only on a
sample size of one and hence it is not really statistically useful
because  it  is  a  saturated  model.  Some of  the  advantages  and
disadvantages  of  a  crude  map  of  the  SMR  have  been
highlighted  by  Lawson  et  al.  [15].

In  recent  years,  the  attempts  to  map  incidence  and
mortality  from  diseases  such  as  cancer  have  been  explored.

Such maps usually display either relative rates in each district
or  province,  as  measured  by  a  SMR  or  similar  index.  The
standard models are detailed in the literature on the empirical
methods and its applications can be found in [36, 37]. Clayton
[38]  has  earlier  provided  approach  for  estimating  the  SMR
using Bayesian methodology. According to [26] the mean of
the  estimator,  k  and its  variance,  which will  be  large  if  the
expected number of incidence cases is small. This is one of the
disadvantages  of  using  the  SMR.  Other  disadvantages  are
discussed by [39],  showing that  the SMR is  based on a ratio
estimator.

 

2a:  Observed death counts mapping based in 2013 Nigeria DHS. 

 

2b :  Standardized Mortality Ratio (SMR) mapping  based in 2013 Nigeria DHS. 
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Fig. (2). Descriptive summary maps: (a) observed child death counts, (b) crude standardized mortality ratio SMR (c) proportion of poor households
(d) smoothed relative risk RR map from independent Poisson-Gamma distribution.

From Fig.  (2a),  (the  raw death  counts  map),  a  cluster  of
child mortality was occurred and concentrated in the northern
part  of  Nigeria.  With  reference  to  Fig.  (2c),  most  northern
states are darker than the southern regions. This indicates that
there are more economically deprived households in northern
Nigeria than in the southern regions. Reference to Fig. (2b) , in
(SMR),  shows  few  states  with  an  unusual  low  or  (high)
mortality incidence, while such districts (states) are bordered
/surrounded  by  relatively  high  counts.  For  instance,  the

observed (isolated) low incidence of mortality in Borno State,
which is surrounded by states with relatively high death counts,
is  an  evidence  of  geographical  disparities  with  no  clear
patterns. Another scenario can be seen in a state like Zamfara
(with a high mortality count (130)), which shares boundaries
with  states  in  the  north  -western  region  with  relative  high
mortality  risk  states  such  as  Kebbi  (109.55)  and  Sokoto
(124.77). These scenarios may better be handled by a spatial
random  effect  model  or  the  BYM  model,  which  exhibit

 

2c : Percentage poverty (poor households)  mapping  based in 2013 Nigeria DHS. 

 

2d: Relative Risk for independent  Poisson Gamma  Model  
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borrowing  strength  that  is  regions  close  to  each  other  share
similarities in their prevalence.

Fig.  (1a)  Displays  the  map  of  observed  mortality  counts
across the 37 states(districts) in Nigeria, Fig. (2b) is the map of
SMRs of the child mortality and corresponding Table 1  with
SMRs  that  vary  widely  around  their  mean,  0.920,  (standard
deviation:  0.306).  Although,  the  evidence  of  observed  lower
SMRs were recorded in the southern regions of the country, the
geographic variation in child mortality with clustering of high
mortality observed in the northern states with a relatively low
mortality prevalence (isolated area) of Borno state is apparent.
No clear spatial pattern emerges from the map.

Fig. (1b) also depicts the empirical estimation of SMR of
child  mortality.  The  geographical  patterns  of  child  mortality
distribution are similar for Fig. (1a), raw mortality count map
and  the  crude  SMR  2(b).  The  clusters  of  high  mortality  or
concentrated  mortality  found  in  the  northern  regions  can  be
attributed  to  partly  unobserved  heterogeneity  and
environmental  factors.  The  smooth  SMR  map  (d)  shows
evidence  of  localized  spatial  smoothness  and  neighbouring
states exhibited similar patterns of mortality risk, while other
neighbouring  regions  far  apart  showed different  (local)  risks
patherns. In Figs. (2b and 2d), regions coloured black show the
SMRs  with  RR  greater  than  one  indicates  significantly
excess(higher) mortality . The light coloured regions are states
signify low prevalence (RR less than one) of child mortality,
while the grey coloured regions are not significant.

The map of Relative Risk (RR mean) from the independent
Poisson model is shown in Fig. ( 2d). The map depicts that the
model  could  not  capture  the  geographical  variation  in  the
spatial  pattern  of  the  actual  mortality  count  data.

For  instance,  discontinuities  can  be  seen  in  some  states

with  clustering  of  high  mortality  rates  in  the  north  when
compared  with  the  observed  counts  map.  Katsina  State
recorded the highest expected counts and posterior mean RR,
but  the  Poisson  model  (no  random  effect)  would  classify
Katsina lower than the actual mortality level. Another scenario
in  the  spatial  disparities  was  also  observed  in  Ekiti  State  in
south-west  Nigeria  with  small  expected  counts,  but  the  state
was an elevated high risk. This dispersion can be attributed to
small  population  size.  The  independent  Poisson  sometimes
under-estimates the mortality risk such as Balyesa and Lagos,
perhaps  these  could  result  from  a  high  expected  value
(denominator).

A  careful  inspection  of  the  expected  counts  in  Fig.  (2)
reveals that higher child mortality risk were detected in some
states  of  the  north  regions  resulting  from  empirical
computation of SMR i.e. Kano, due to large expected count of
197.827  (divisor)(refer  to  Table  2).  Four  other  states  were
considered with expected counts of 46.569, 51.153, 61.420 and
131.64 corresponding to approximate percentile values of 10th,
25th, 50th and 90th of the expected counts respectively. It  is
worth mentioning that the choice of unusually low relative risk
values  (SMR) (10th  percentile  of  the  expected  counts)  would
establih  an  epidemiological  importance.  Interestingly,  some
districts  (states)  had  unusual  low  death  rates  surrounded  by
neighbouring  states  with  a  fairly  high  mortality  risk.  The
expected  mortality  rates  of  the  four  states  correspond  to  the
percentiles (10th - 90th percentile): Abia (46.57), Osun (51.12),
Plateau Sate (61.42) and Jigawa (131.64). For example, Plateau
state (61.42) had relative low prevalence but is surrounded by
states had relatively high mortality. In such cases, the mortality
rates  in  those  neighbouring  states  may  have  a  substantial
influence on the smoothing effects on states that share borders.
This scenario can be handled by the spatial Conditional Auto-
Regressive (CAR) model.

Table 1. Descriptive Statistics of the death counts, the expected counts and SMR of under-five deaths by state for 5-year
period (2008-2013) in Nigeria.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum
Observed counts (y) 21 39 51 78 104 229
Expected Counts (E) 43.73 51.15 61.42 78.00 98.64 197.80
SMR 0.4105 0.7251 0.8303 0.9197 1.0770 1.7570

Table 2. Descriptive distribution of observed counts, total births, expected counts, relative frequency of under- five deaths by
state based on the 2013 Nigeria DHS (arranged in alphabetical order).

State Observed Deaths(O) Expected Count(E) Relative Frequency SMR Total Birth(N)
Abia 39 46.57 1.35 0.425 508

Adamawa 100 91.76 3.47 1.894 1001
Akwa Ibom 43 52.80 1.49 0.873 576

Anambra 46 49.23 1.59 0.349 537
Bauchi 180 131.92 6.24 2.392 1439
Bayelsa 58 75.26 2.01 0.959 821
Benue 61 60.50 2.11 1.109 660
Borno 28 55.00 0.97 0.581 600

Cross river 36 48.22 1.25 0.567 526
Delta 46 63.44 1.59 0.697 692
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State Observed Deaths(O) Expected Count(E) Relative Frequency SMR Total Birth(N)
Ebonyi 92 66.00 3.19 1.687 720

Edo 27 54.55 0.94 0.556 595
Ekiti 33 48.59 1.14 0.627 530

Enugu 46 52.62 1.59 1.002 574
FCT-Abuja 28 45.93 0.97 0.264 501

Gombe 126 105.88 4.37 2.882 1155
Imo 40 43.73 1.39 0.304 477

Jigawa 194 131.64 6.72 2.413 1436
Kaduna 51 80.40 1.77 0.258 877
Kano 221 197.83 7.66 1.655 2158

Katsina 136 133.57 4.71 1.241 1457
Kebbi 152 109.55 5.27 3.391 1195
Kogi 27 44.83 0.94 0.431 489

Kwara 46 62.61 1.59 0.529 683
Lagos 64 87.00 2.22 1.066 949

Nasarawa 58 60.05 2.01 0.662 655
Niger 57 87.64 1.98 1.160 956
Ogun 37 49.14 1.28 0.623 536
Ondo 48 59.40 1.66 0.938 648
Osun 21 51.15 0.73 0.347 558
Oyo 36 60.60 1.25 0.586 661

Plateau 51 61.42 1.77 1.036 670
Rivers 39 49.23 1.35 0.313 537
Sokoto 163 124.77 5.65 1.427 1361
Taraba 123 114.22 4.26 1.247 1246
Yobe 104 98.64 3.60 0.798 1076

Zamfara 229 130.36 7.93 0.079 1422

To conclude this section, in comparing the smooth maps of
the SMR map and the PG map, it shows that there was no clear
difference in the smooth risk maps from both estimates.  The
empirical approach makes epidemiological sense and provides
better understanding of mortality prevalence across the regions
in  Nigeria.  These  maps  are  primarily  used  as  a  tool  for
identifying regions with unusually (low) high risk area, so that
further attention can be given to these priority districts (states).

2.2. The Statistical Models

Mapping mortality rates or disease incidence could provide
important  information  in  many  epidemiological  studies  for
resource allocation and disease management. To estimate and
map crude mortality rates, particularly rare disease aggregated
at the administrative unit or regional level can be statistically
challenging  if  the  high  variability  of  population  sizes  over  a
small area is not taken into account. To mitigate the problem,
an exploratory  data  analysis  was  carried  out  by mapping the
standardized  mortality  ratio  as  suggested  by  [32].  The
following  four  models  are  explored  to  capture  the  effects  of
spatial dependence and overdispersion in the data

Model 1: The Poisson-Gamma model is sometimes used to
model  the  relative  risk  of  the  number  of  child  mortality  in  a
district  (state).  The  relative  risk  combines  with  the  Poisson
likelihood  function  for  the  death  counts  and  Gamma  prior
distribution  to  yield  a  Gamma  posterior  distribution  for  the

relative risk [36].

Let yi and Ei; i = 1;::: ; n, denote the observed and expected
number of death cases in district (state) i. We assume the death
count that yi  ~ Poisson(Eϑ),  where ϑ  is  the unknown relative
risk and Poisson mean µi is modeled as

(1)

We  assume  that  ϑ  =  Gamma(a,b)  for  i  =  1:::  37  in  our
study  n=37  districts  (states)  in  Nigeria.  By  combining  the
likelihood and the prior distribution, the posterior mean or the
relative is obtained as

where  ;  represents  a  weighted  average  that
indicates  how  much  the  posterior  mean  shrunk  towards  the
individual expectation, Ei as explained in [37]. One advantage
of  the  Poisson-gamma model  is  that  it  provides  a  simplified
way  to  accommodate  over-dispersion  in  the  model.  A
drawback is  that  this  Poisson-gamma model  does  not  permit
the inclusion of covariate(s) [36, 38].

Model 2: Clayton and Kaldor [16] first proposed a Poisson
log  normal  model  that  combines  the  relative  risk  and  a
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normally  distributed  random  variable.  The  model  includes
area-specific random effects or spatially unstructured random
effects, vi and ϑ is the overall level of the relative risk .

Using equation (1) above, µi = Eϑ, the log normal model
for the relative risk becomes

(2)

where the linear link function η = log(ϑ) = X'β+vi

vi  is  the  spatially  unstructured  random  effects  that  were
modeled as  using the Gaussian prior  distribution with a  zero
mean and the variance, i.e.vi ~ N(0, ) where  represents
specific  area  variance.  X  is  a  vector  of  covariates  (such  as
proportion of poor households, unimproved source of drinking
water,  unprotected  toilet,  children  having  diarrhoea,  the
proportion  of  mothers  using  solid  fuels  (coal,  wood,
agricultural residues cow dung etc) as cooking method . Thus,
the  relative  risk  provides  a  more  flexible  alternative  to  the
independent Poisson model, as stated in [39].

Model 3: The conditional autoregressive (CAR) model has
been widely  used for  the  analysis  of  spatial  data  in  different
areas, such as demography, geography and epidemiology. This
model  was  introduced  by  [40]  as  a  spatial  methodology  to
estimate disease risk, which assumed a spatial dependence with
neighboring  regions.  The  ui  is  the  spatially  structured
(correlated) random effects were modeled using the conditional
autoregressive prior distribution as suggested by [40].

Using  equation  (1)  above,  ui,  the  CAR  model  for  the
relative  risk  becomes

(3)

and the linear link function becomes η = log(ϑ) = Xβ+µi

where  ui
 where  area  i  ~  j  are

adjacent (neighbours), and wij = 1 and zero if they are not. X is
a vector of covariates (such as proportion of poor households,
unimproved  source  of  drinking  water,  the  proportion  of
households  using unprotected toilets,  the  number  of  children
having diarrhoea, proportion of mothers using solid fuels (coal,
wood, agricultural residues, cow dung etc) as cooking methods.

Model 4: Besag, York and Mollie (BYM) model was first
introduced by [16] and later extended by [40]. BYM model is
then  split  into  two  spatial  random  and  heterogeneity
components  and  it  is  formulated  through  the  following
equation.  The  death  count  assumes,  yi  ~  Poisson(ϑ)  the  log
relative risk is modeled through equation (1) above, µi  = Eϑ,
and the BYM model for the relative risk becomes

(4)

and the linear link function becomes η = log(ϑ) = Xβ + µi +
vi

where  vi  and  µi  are  unstructured  and  structured  spatial
random effects  respectively.  They are model  as  vi  ~  N(0, )

and  , where area i ~ j are adjacent

(neighbours), wij = 1 and zero if they are not. X is a vector of
covariates as stated above . The ϑ reflects the amount of extra
Poisson  variation  in  the  data  and   represents  specific  area
variance as stated in [39]. The precision parameters  and 
control the variability of u and v respectively. The parameter
estimation  was  executed  via  the  Bayesian  Markov  Chain
Monte Carlo Convergence of the MCMC, which was reached
at 15000 iteration after a burn-in period of 5,000 samples and
the thinning was done at every 90th element of the chain. The
statistical inference is based on full Bayesian framework and
prior  distributions  were  specified  for  the  model  parameters.
The posterior estimates are used to explain the model results of
the  UH,  CAR  and  the  BYM  model  which  are  presented  in
Table 4.

The  model  performance  was  investigated  via  Deviance
Information Criterion (DIC) which is due to Spiegelhalter et al.
[41] given as

(5)

where D is the posterior mean of the deviance and  is the
vector  of  model  parameters.  pD  is  the  number  of  effective
parameters  in  the  model  that  penalizes  its  complexity.  DIC
takes into account both the model fit (summarized by D) and
model complexity (captured by PD) when comparing models.
Therefore,  the  model  having the  smaller  value  of  DIC is  the
most preferred one as it achieves a more optimal combination
of fit and parsimony.

The  parameter  estimation  was  done  using  Bayesian

in WinBUGS after [41] and data manipulation was done in R
programming [42]

3. RESULTS AND INTERPRETATIONS

Table 2  presents the number of child deaths,  total births,
expected deaths, and relative frequency distribution. The study
involved 31482 children born between 2008 and 2013, out of
which  2886  children  died  before  reaching  the  age  of  five.
Zamfara  recorded  the  highest  child  mortality  and  relative
frequency  of  229  (7.96)  and  the  second  highest  occurred  in
Kano,  221(7.66).  Both  states  are  found  in  the  north-western
region  of  Nigeria.  The  lowest  under-five  mortality  was
recorded  in  Osun  state  of  21(0.73).

Table  3  presents  the  estimates  of  the  parameters  and
goodness  of  fit  for  the  hierarchical  models  discussed  in  the
previous  section.  The  non-spatial  method  (P-Gamma model)
does not account for autocorrelation in the residuals, although
they appear to perform reasonably well overall.

Model 2: log    )log()log()log()log( EE    
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Markov  Chain  Monte  Carlo  via  Gibbs  Sampling.  The
convergence of the MCMC was achieved at 15,000 iterations
after a burn-in period of 5,000 samples and thinning of every
90th element of the chain. The hyper-prior prior distributions
assumed for the precision parameters, , and  are Gamma
distributions as , ~ Г(0.05,0.005),  ~ Г(0.05,0.005) and ,
~ Г(0.05,0.005) respectively. The coefficients of the covariates
of the regression model are assumed to be normally distributed
given as, β ~ N(0,0.005). All model analyses were carried out
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Table 3. Deviance information criteria (DIC) and model goodness of fit.

Model Name D(θ) pD DIC
M1 UH 261.426 25.278 286.70
M2 PG 256.885 31.217 288.10
M3 CAR 262.233 24.163 286.40
M4 BYM 260.267 25.043 285.31

Table 4. Estimates and 95% credible intervals of model parameters and ecological covariates.

 

 
PLN

95 % CI
 

UH 95 % CI
CAR

95 % CI
BYM

95 % CI
β0 - - - -0.136 -0.209 -0.065 -0.137 -0.182 -0.093 -0.138 -0.196 -0.080
A 10.31 6.23 15.97 - - - - - - - - -
B 11.20 6.68 17.35 - - - - - - - - -
µ 0.92 0.83 1.03 - - - - - - - - -
σ2 0.09 0.05 0.14 - - - - - - - - -
β1 - - - 0.052 -0.460 0.614 0.130 -0.452 0.698 0.173 -0.372 0.730
β2 - - - 0.350 -0.149 0.875 0.362 -0.100 0.857 0.353 -0.190 0.851
β3 - - - -0.095 -0.650 0.427 -0.247 -0.762 0.291 -0.226 -0.771 0.333
β4 - - - 1.653 0.773 2.491 2.088 1.088 3.165 2.003 1.101 3.006
β5 - - - -0.306 -1.066 0.520 -0.491 -1.383 0.350 -0.516 -1.591 0.430

- - - 14.34 5.006 35.47 56.98 6.104 339
σu - - - 0.291 0.168 0.447 0.221 0.054 0.405

- - - 41.760 16.75 100.5 - - - 330.60 23.84 2101
σv - - - 0.168 0.100 0.244 - - - 0.099 0.022 0.205

The covariate parameters in Table 4 are designated as follows: β1 = the proportion of children who had diarrhoea two weeks prior to the survey, β2 = proportion of children,
whose household used unprotected latrine and open field defecation (unhygienic toilet /poor toilet facility), β3 = proportion of households who did not have access to pipe
borne water ( source water from rivers/ dams and unprotected well), β4= the proportion of poor and poorest households in the survey and β5 = the proportion of households
who used solid fuels cooking sources (coal, charcoal, crop residues).

Although the CAR model and BYM model each provides
important  information  about  clustering  of  the  childhood
mortality relative risk pattern, one would recommend that the
BYM is the best fitted model for Nigerian child mortality data,
since it yielded the lowest value of the DIC = 285:310 and with
a  lower  pD=  25.04.  The  CAR  model  had  DIC=  286.40  and
pD=(24.16) as the goodness of measure and it competes closely
with the BYM model. However, the BYM model is the most
preferred one due to its  robustness and at  the same time one
can evaluate the proportional of variation that can be attributed
to  spatial  dependence  (clustering)  and  the  variation  due  to
random  heterogeneity  effect  structure  of  the  mortality
prevalence.

Table  4  presents  the  posterior  statistics  of  the  fitted
hierarchical models. It can be observed that the posterior mean
of  P-G  model  is  0.923:  95%  CI  (0.826,  1.030),  which  is
approximately the same as the mean of the SMR of 0.920 and
standard deviation, 0.306. The overall population parameters, a
= 10:310; (6:232; 15:970) and b = 11:200(6:680; 17:350) from
the  Poisson  Gamma  model.  The  Poisson  -log  normal  (PLN)
model  yielded  a  precision  variance  of,  τv

2=  41.76  with  a
standard deviation of 0.168. This indicates that the relative risk
of  child  mortality  at  any  given  state  is  similar  (less

heterogeneous)  to  that  of  its  neighbours.  The  CAR  model's
precision variance,  τu

2  =14:34;  (5,006 to  35.47)  and standard
deviation of 0.291, which indicates that the geographic patterns
of under five mortality exhibits more of clustering across the
selected administrative units (states)in Nigeria. The precision
variance  parameter  of  the  BYM  model  has  CAR  precision
variance,  = 56.98; 95% CI (6.104, 339.0) and σu = 0.291. In
other words, the small value of standard deviation,σu = 0.291 of
spatial  structured  random  effects,  which  means  that  the
neighbours  are  not  independent.  The  spatial  heterogeneity
component  of  variation  in  the  BYM  model  has  precision
variance,   =  330.60,  95%CI (23.84,  2101)  and σv  =  0.099.
From the BYM model analysis, one can deduce the proportion

of  the  variation  that  is  due  to  clustering  as   =
69.06%  and  the  proportion  of  variability  attributed  to  the
heterogeneity  random  effect  is  1  -α  =  30.93%.

The results revealed further that the geographic patterns of
the  under-five  mortality  prevalence  in  Nigeria  exhibit  more
clustering than the spatial heterogeneity variation, as evidenced
from the estimates. The geographic pattern of variation of the
under-five  mortality  can  be  attributed  to  clustering  from  the
exposure to local environmental factors, underlying ecological
indices or severity of poverty index at the community level.
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Table 5. Relative risk estimates and corresponding 95% credible intervals (CI) for the CAR model and states grouped by RR
from low to high risk of under-five mortality based on 2013 Nigeria DHS.

RR < 0.050 RR : 0.050-0.990 RR > 1
Significant low Not significant Significant high

Osun 0.572 (0.572, 0.714) Akwa Ibom 0.807 (0.640, 1.006) Sokoto 1.316 (1.133, 1.515)
Edo 0.591 (0.591, 0.736) Enugu 0.813 (0.646, 1.013) Ebonyi 1.326 (1.101, 1.586)

Fct-abuja 0.625 (0.625, 0.806) Imo 0.842 (0.646, 1.076) Bauchi 1.352 (1.178, 1.548)
Kwara 0.635 (0.635, 0.791) Rivers 0.846 (0.681, 1.033) Kebbi 1.362 (1.160, 1.594)
Ekiti 0.645 (0.645, 0.815) Plateau 0.939 (0.752, 1.142) Jigawa 1.439 (1.252, 1.645)

Borno 0.680 (0.680, 0.860) Adamawa 1.018 (0.843, 1.218) Zamfara 1.680 (1.479, 1.910}
Kogi 0.680 (0.680, 0.820) Benue 1.063 (0.876, 1.264)   
Oyo 0.699 (0.699, 0.876) Katsina 1.083 (0.926, 1.249)   

Kaduna 0.708 (0.708, 0.850) Kano 1.088 (0.951, 1.231)   
Ogun 0.708 (0.708, 0.885) Yobe 1.105 (0.926, 1.300)   
Lagos 0.711 (0.711, 0.881) Taraba 1.125 (0.964, 1.294)   
Delta 0.726 (0.726, 0.881) Gombe 1.139 (0.969, 1.327)   
Niger 0.736 (0.736, 0.875)    

Bayelsa 0.762 (0.762, 0.960)    
Ondo 0.773 (0.773, 0.936)    

Anambra 0.781 (0.781, 0.964    
Abia 0.793 (0.793, 0.964)    

Nasarawa 0.801 (0.801 0.984)    
Cross river 0.801 (0.801 0.994)        

Table 6. Relative risk estimates and corresponding 95% credible intervals (CI) for the BYM model and states grouped by RR
from low to high risk of under-five mortality based on 2013 Nigeria DHS.

RR < 0.050 RR : 0.050-0.990 RR > 1
Significant low Not significant Significant high

Osun 0.566 [0.420, 0.726] Anambra 0.801 [0.637, 1.008] Sokoto 1.310 [1.127, 1.511]
Edo 0.580 [0.443, 0.733] Akwa Ibom 0.802 [0.628, 1.001] Ebonyi 1.321 [1.092, 1.590]

Fct-Abuja 0.633 [0.474, 0.818] Enugu 0.817 [0.641, 1.015] Bauchi 1.358 [1.181, 1.547]
Ekiti 0.659 [0.511, 0.840] Rivers 0.826 [0.648, 1.024] Kebbi 1.362 [1.166, 1.576]

Kwara 0.662 [0.525, 0.828] Imo 0.832 [0.636, 1.068] Jigawa 1.443 [1.257, 1.640]
Kogi 0.669 [0.526, 0.827] Nasarawa 0.835 [0.666, 1.042] Zamfara 1.696 [1.491, 1.922]
Borno 0.672 [0.497, 0.859] Plateau 0.926 [0.738, 1.135]

Kaduna 0.697 [0.556, 0.848] Adamawa 1.030 [0.854, 1.224]
Oyo 0.703 [0.542, 0.880] Benue 1.042 [0.839, 1.252]

Lagos 0.709 [0.550, 0.885] Katsina 1.067 [0.910, 1.234]
Niger 0.718 [0.578, 0.866] Kano 1.091 [0.960, 1.231]
Delta 0.724 [0.576, 0.891] Yobe 1.102 [0.918, 1.302]
Ogun 0.724 [0.557, 0.921] Taraba 1.112 [0.948, 1.284]

Bayelsa 0.762 [0.601, 0.946] Gombe 1.151 [0.982, 1.339]
Ondo 0.785 [0.627, 0.969]
Abia 0.786 [0.626, 0.968]

Cross river 0.787 [0.617, 0.980]

Furthermore,  the  risk  factors  are  presented  along  with
posterior  statistics  in  Table  4.  The  results  revealed  that  the
estimated intercept, relative risk effect of the models are: PLN
β  0  =  -0.137;  95%CI  (-0.209,  -0.075),  CAR:  β  0  =  -0.137,
(-0.182,  -0.092),  and  BYM  model:  β  0  =  -0:138,  95%  CI
(-0.200, -0.080). These risk effects are significantly different

from  zero  and  negative.  These  models  (CAR  and  BYM)
consolidate  the  result  of  the  UH  model  that  indicates  the
overall  child  mortality  risk.  A  negative  coefficient  intercept
indicates a decreasing relative risk of childhood mortality by
keeping the (fixed covariates) determinant factors of under-five
mortality  constant.  The  household  poverty  variables  are
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significant and positive for all the models (UH, CAR and the
BYM)  with  these  parameter  estimates  UH:  1.653,  95%  CI
(0.773,  2.491),  CAR:  2.088  95%CI  (1.088,  3.165),  BYM:
2.003,  95%CI  (1.101,  3.006).  The  results  showed  that  the
household poverty level would increase the relative mortality
risks among the children who belong to the most economically
deprived households. Other covariates in the model were not
significant for the childhood mortality. However, the children
who suffered from diarrhoea and who used unhygienic toilets/
sanitation had a higher tendency to die before reaching the age
of  five  (i.e.  positive  association  with  the  under-  five  child
mortality),  although  they  were  not  significant  in  this  case.
Children from mothers who used solid fuels (such as charcoal,
coal, wood or agricultural residues) for cooking and drank from
unprotected water are negatively insignificant.

Table  5  presents  the  results  of  the  conditional  auto-
regressive  (CAR)  model  with  the  classification  of  the  states
according to the relative risk (RR) value of childhood mortality
prevalence  and  significance  probability  (RR  >  1)  for  UH
model.  The geographical  variation  in  the  relative  risk  values

range  from  0.438  to  1.910.  The  relative  risk  above  1(RR
>1.000) indicates that the under-five mortality prevalence are
higher in those states. The lowest estimated risk value occurred
in  Osun  state:  0.0.572  (0.438,  0.714)  and  highest  risk  was
recorded  in  Zamfara:1.680  (1.479  to  1.910).  In  the  risk  map
displayed in  Fig.  (3),  the  geographical  variation ranges  from
0.420  to  1.922.  Out  of  the  37  districts,  the  BYM  model
classified six (6) states as having a high relative risk of under-
five  mortality  (RR  >1.000).  The  relative  risk  value  for  the
mortality ranges from the lowest Osun state: 0.566(0.42, 0.73)
to  the  highest  risk  in  Zamfara:  1.696  (1.491,  1.992).  These
showed that six (6) states had a relative risk significantly above
1 Table 6.

The probability risk map displayed in Fig.  (4)  represents
smooth  map  of  mortality  for  the  BYM  model  and  the  states
with relative risk value greater than 1. This is considered as an
indication of a lower prevalence of under-five child mortality
detected in the south western states and a high prevalence of
mortality was found in the northern regions of the country.

Fig. 3 contd.....
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3a. Posterior mean of mortality from conditional autoregressive (CAR)  model 
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Fig. (3). Relative Risk of childhood mortality prevalence and significance probability (RR > 1.000) for the CAR model based on 2013 Nigeria DHS.

Fig. 4 contd.....
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3b. Exceedence RR>1 (CAR model) 

4a: Posterior mean of mortality prevalence from Convolution (BYM –M4) model 
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Fig. (4). Relative Risk of childhood mortality prevalence and significance probability (RR > 1.000) for the BYM model based on 2013 Nigeria DHS.

4. DISCUSSION

In this study, a Bayesian hierarchical model was employed
to assess the child mortality risk and potential risk factors such
as  socio-cultural  and  environmental  factors  for  under-five
mortality in Nigeria. The strength of the approach is the ability
to  incorporate  high  over-dispersion,  spatial  structure  and
covariates  into  the  models.

The  result  shows  that  household  poverty  is  significantly
associated with under-five mortality in Nigeria. In other words,
an economically deprived household has higher likelihood of
childhood mortality. This finding corroborates what has been
established in previous studies. These have shown that people’s
living  conditions  and  household  poverty  influences  virtually
the  totality  of  the  demographic  structure  and  health  indices,
including life facilities, and even human capital development
as reported in [43 - 45]. A similar study conducted in Nigeria
by  [46]  using  data  from  1990-2008  found  that  household
wealth  had  a  strong  association  with  not  only  under-five
mortality,  but  also  with  the  other  house  members  life
expectancy,  maternal  mortality  and  morbidity,  fertility,
contraceptive  use  and  the  use  of  healthcare  .

The results also reveal that poor toilet sanitary conditions
and  unimproved  sources  of  drinking  water  are  positively
associated with childhood mortality, although these factors are
not  significant.  In  contrasts,  a  previous  study  conducted  by
[47],  who  introduced  similar  biophysical/geographical
variables  into  their  model  of  child  malnutrition,  found  that
these  factors  are  significantly  correlated  with  child
malnutrition: drought prevalence, the percentage of households
with piped water, and diarrhoea disease prevalence.

Furthermore, the probability risk maps reveal that there are

clusters  of  high  mortality  risk  concentrated  in  the  northern
regions  of  Nigeria.  These  outcomes  can  be  attributed  to  the
complexities  such  as  cultural  factors,  socio-demographics,
severity  of  household  poverty,  climate  and  drought,  lack  of
access  to  portable  water,  open  toilets,  house  structure  and
individual  household  environments.  The  findings  are  in
complete agreement with the study conducted in Mozambique
by [48]

The  results  in  Table  4  showed  further  that  there  are  no
significant  relationships  between  drinking  water  sources  and
under-five mortality. However, the findings from other studies
conducted by [49, 50] have demonstrated the positive impact of
access  to  clean  water  as  significant  for  under-five  mortality,
while the problem of unsafe drinking water, inadequate water
for  food  and  personal  hygiene,  and  insufficient  access  to
sanitation have been identified as partly responsible for about
88%  of  child  deaths  from  infectious  diseases,  and  mostly
repeated diarrhoea in children globally, as reported in [51, 52].
Other  studies  have  established  that  a  high  proportion  of
children  deaths  in  low-middle  income  countries  can  be
attributed to diseases resulting from poor housing conditions,
unsafe water supply, inadequate sanitary facilities, unhygienic
behaviour and household air pollution from solid cooking fuels
- wood, charcoal, and agricultural residues [53, 54].

The probability risk maps presented in this study highlight
geographic disparities and relative high mortality risk among
young children in Nigeria, mostly found in the northern parts
of  the  country.  The  results  corroborate  the  findings  from
previous studies conducted in Nigeria by [55], who used a scan
statistic method and by [56], who used an exploratory spatial
analysis. The persistent high risk of child mortality found in the
northern  regions  can  be  related  to  environmental  factors,

���������	
��

���
���

��	

��


���

���

���

4b: Excedence RR> 1 (BYM model) 
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neighbourhood structure, education and economic deprivation.
Our  findings  are  in  tandem  with  a  study  conducted  in  other
West  African  countries  such  as,  Ghana,  where  researchers
detected  non-random  patterns  or  clusters  of  high  child
mortality  at  village  level  with  a  large  concentration  of
polygamous population or nuclear family settings as reported
by [57].

The  statistical  issues  relating  to  disease  mapping  and
modelling  of  aggregated  data  of  rare  disease  have  been
extensively  discussed  in  [36],  while  [58]  had  earlier
investigated the small area clustering of under-five mortality in
Ethiopia. Previous studies have explored mixture models, for
example,  the  study  conducted  by  [59],  where  researchers
combined a convolution model and Poisson-Gamma model to
account for both over-dispersion and spatial correlation in the
modeling of kidney and prostate cancer data. A wide range of
distributions  have  been  derived  with  Poisson  distribution
because of its positive parameter value, see ([60, 61] for more
discussion).

This present study consolidates the existing literature such
as  [12,  13,  62],  reported  that  the  health  impacts  of  climate
change,  geography  and  the  local  environment  where  people
live  had  significant  association  with  their  health  outcomes.
Furthermore, health inequalities are partly a reflection of social
inequalities,  which  are  more  widely  defined  among  sub-
populations  even  in  developed  countries,  according  to  the
studies  by  [17,  20].  A  compressive  assessment  of  the  health
impacts of climate change and geography scale was discussed
in  [62  -  64].  In  their  study,  they  emphasized  that  complex
processes  operating  at  various  geographical  scales  linking
global health with the local and individual characteristics made
a significant contribution to health determinants. The findings
from  the  present  study  can  assist  healthcare  givers  and
government agencies to address the geographic disparities in
the mortality prevalence and design needed interventions.

CONCLUSION

The proposed models and the results reveal that there are
apparently  geographical  inequalities  of  child  mortality
prevalence  across  the  states  in  Nigeria.  The  maps  highlight
clusters of high under-five mortality prevalence in the northern
states and in an isolated case of Ebonyi (in the south eastern
region)  during  the  study  period.  Therefore,  these  states
(regions)  are  in  need  of  urgent  attention  and  interventions.
However,  a  relatively  low prevalence of  childhood mortality
was  observed  in  the  south-western  parts  of  Nigeria.  The
findings  can  guide  in  evidence-based  allocations  of  scarce
health resources in the sub-region with the aim of improving
the chance of child survival. Our methodology was motivated
by  two  specifications,  the  first  of  which  assessed  spatial
dependence  by  borrowing  strength  from  neighbouring  states
(districts)  to  identity  clusters  of  child  mortality  in  Nigeria.
Secondly,  the  model  investigated  the  impact  of  spatial
heterogeneity, as a way of evaluating geographical disparities
in child mortality prevalence across the regions in Nigeria.
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