
1874-9445/22 Send Orders for Reprints to reprints@benthamscience.net

1

DOI: 10.2174/18749445-v15-e221014-2022-49, 2022, 15, e187494452209292

The Open Public Health Journal
Content list available at: https://openpublichealthjournal.com

RESEARCH ARTICLE

A Markov Chain Approach to the Pattern of Blood Donation Status at a Blood
Service Centre in Zimbabwe

Coster Chideme1,* and Delson Chikobvu1

1Department of Mathematical Statistics and Actuarial Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa

Abstract:

Background:

Blood donors’ behaviour towards blood donation is not easily predictable and can be considered a stochastic random variable. A four-state Markov
chain technique was defined and adopted in this study. The transition probabilities of blood donation within the four identified states, viz: new,
regular, occasional, and lapsed donors were used to making further inferences about the dynamics in blood donation in Harare, Zimbabwe.

Objectives:

The paper presents a four-state Discrete Time Markov Chain (DTMC) model in analysing the changes in blood donation status over the four-year
study period.

Methodology:

A transition probabilities matrix was developed and parameters estimated using the maximum likelihood method and two other approaches, and
inferences were made based on the resultant transition matrix.

Results:
About 56% of new donors made at least one repeat donation and became regular donors within the first year, and the numbers gradually declined
with time, whilst the lapsed donors increased from 35.6% in the second year to 55.6% in year 4. The long-run probabilities tell the same, with
80.9% of blood donations becoming lapsed in the long run. Depending on the current state of donation, new or regular donations will likely move
to the regular donation state in the following time step (year). On the other end, occasional and lapsed donations have a higher probability of
entering the lapsed donation state in the following time step (year).

Conclusion:
The paper provides useful insights into the Markovian transition probabilities among the blood donation states, and this has implications on future
blood donors’ pool and blood bank inventory in Zimbabwe. The decline in the number of donors who make repeat donations is a worrisome trend
since regular donations are the lifeline of any blood service centre.

Keywords: Discrete-time markov chains, Transition probability matrix, Steady state probabilities, Transition graph, First passage time, Blood
donors.
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1. INTRODUCTION

The  invaluable  contribution  made  by  blood  donors  in
saving lives has made the study of blood donors’ knowledge
and attitudes towards blood donation a major concern in some
blood supply chain studies [1 - 3]. However, the diminishing
number  of regular  blood  donors  pose a  serious threat  to the
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blood  supply  chain  due  to  the  increasing  demand  for  blood
transfusion.

Examining  the  variability  of  blood  donation  patterns  is
very  critical  for  the  health  care  sector  in  Zimbabwe.  The
donors  can  be  classified  into  four  states:  new,  regular,
occasional,  and  lapsed  donors.  The  assessment  of  individual
blood donor states in the blood bank is vital in understanding
the  dynamics  of  the  blood  donation  process.  Information  on
blood  donation  trends  is  also  crucial  for  the  blood  service
managers  to  plan  the  recruitment  and  management  of  blood
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inventory  [4].  Understanding  blood  donation  distribution  is
equally necessary for future planning. The distribution pattern
of individual blood donations in the various identified states,
rather than studying the total amount of blood donations within
an  entire  period,  is  more  important  and  informative  for
studying  the  pattern  of  blood  donation  occurrences.  The
behaviour  of  blood  donors  is  unpredictable  since  the  donors
optionally donate their blood. Blood donation exhibits a strong
variability  in  time  and  space;  hence  blood  donation  is  a
stochastic process full of uncertainty. This uncertainty in blood
donation is so high that ordinary non-statistical techniques may
yield unsatisfactory results for planning purposes [5].

The blood supply chain depends upon a finite number of
donors within any given period. This is aggravated by the fact
that blood donation is very irregular and uncertain [6]. Blood
managers  fear  the  risk  of  the  blood  system  failing  to  meet
blood demand requirements  in  the  event  of  an emergency or
disaster occurring [7]. The occurrence of unpredictable public
emergency health risks,  mandates blood centres staying alert
and responsive to fluctuating blood supply and demand [8]. A
practical  example  is  the  Covid-19  pandemic,  which  has  left
many blood centers across the globe grappling with declining
blood stocks due to reduced blood donations. It is against this
background that blood managers need to constantly monitor the
dynamics of the blood donors in the donation pool. This will
enable  them  to  make  informed  decisions  and  take  proactive
measures to ensure adequate blood availability when needed.
There are several factors that affect blood donation frequency,
such  as  low  haemoglobin  levels,  the  interval  between
donations,  gender,  age,  and  exposure  to  infection.

A Markov chain approach was employed to determine the
probability of transitions among the four identified major blood
donation categories in Zimbabwe. A Markov chain is a special
category of a stochastic process where the state space and time
domain are discrete in nature. It is a discrete time-time process
for which the future behaviour of the process,  given the past
and present,  only depends on the present and not on the past
[9]. It is described by a matrix of transition probabilities from
one  state  to  another  state  [10].  During  their  blood  donation
career, a blood donor can stay in a particular state for a long
time or stochastically transit from one state to another. Markov
chain  models  can  be  used  to  compute  the  probability  and
transition  frequency  associated  with  each  identified  blood
donation  state.  The  application  of  the  Markov  chain  in
modeling  the  dynamics  of  state-dependent  blood  donation
patterns  is  an  unexplored  perspective  in  Zimbabwe’s  blood
supply  chain.  Most  blood  centers  in  Zimbabwe  use  expert
opinion  and  intuition  rather  than  science-based  approaches.
This study modeled the blood donation status using a Discrete
Time Markov Chain (DTMC) analysis with a finite state space.
The four states, namely: new (N), regular (R), occasional (O)
and lapsed (L) donors are identified and used in the analysis.

There is no study in Zimbabwe that adopts an alternative
approach  that  focuses  attention  on  the  dynamics  of  blood
donations  from donors  in  the  different  identified  states.  This
paper fills this gap by adopting a Markov chain approach for
analysing  blood  donation  transition  frequencies  using  the
Harare-based National Blood Service (in) Zimbabwe (NBSZ)

branch as a focal point. The study focused on Zimbabwe, but
the models can have a global application in other geographical
jurisdictions  with  similar  donor  characteristics  as  found  in
Zimbabwe. The application of the Markov chain models in the
blood supply chain has not received much attention, as in the
other fields of study such as finance, hydrology, ecology and
meteorology, to mention but a few [11 - 15]. Few studies have
been  done  regarding  the  application  of  the  Markov  chain  in
modelling the blood donation process at blood service centres
[16]. Most blood centres in Zimbabwe use expert opinion and
intuition rather than science-based approaches.

According to [17], a Markov chain is a stochastic process
in which the future probability of the process depends only on
the  present  state  of  the  process  and  is  not  influenced  by  its
history. A study by [18] predicted future blood supply, demand
and shortfalls in blood donations in Japan. They used a Markov
model  to  project  future  blood  donations  up  to  the  year  2050
using  data  from  all  blood  donations  from  the  year  2006  to
2009.  Their  study  focused  on  the  volumes  of  blood  units
supplied  and  demanded,  and  they  used  totals  of  blood
donations  from  specific  groups  and  not  individual  donation
patterns.  Donation  is  driven  by  individual  altruism.  Results
showed  fluctuating  numbers  of  blood  donations  and  are
characterized by a yearly decline in the number of donors in
the 20 to 30 years age category. The authors concluded that, if
the prevailing blood donation trends were to continue, then a
shortfall of blood availability was imminent in Japan.

The  effects  of  the  issuing  policies  on  average  blood
inventory levels determine blood shortage probabilities and the
average  age  of  blood  at  transfusion.  They  developed  a
theoretical model using the theory of absorbing Markov chains.
Results established that regular first in, first out (FIFO) and last
in,  first  out  (LIFO) issuing policies  did  not  apply  to  a  blood
issuing policy problem under study. Modified FIFO and LIFO
policies were adopted. Results showed that under the modified
FIFO policy, older blood was issued with a higher probability
as compared to newer or fresher blood. On the other end, under
the modified LIFO policy, fresher blood was released first from
the inventory  with  a  higher  probability  than the  older  blood.
Furthermore, the study revealed the LIFO policy had a greater
probability of resulting in blood supply shortage than the FIFO
policy [19]. Brodheim et al. [20] made an evaluation of a class
of  inventory  and  distribution  policies  for  blood  products
subject to variable demand. They applied a finite state Markov
chain,  which  was  assumed  to  be  positive  recurrent  and
stationary probabilities exist. Solving a system of steady-state
equations,  they  determined  the  probability  of  shortage,  the
average age of inventory and an average number of discarded
blood products. They concluded that the steady-state or long-
term average probabilities calculated from their Markov chain
matrix were able to estimate defined measures of the inventory
policies.

Soraes  et  al.  [20]  Studied  the  inventory  management  of
blood supplies  at  centralized blood banks.  They developed a
Markov  decision  process  model  focused  on  minimizing  the
overall costs in the blood supply chain from blood collections
up  to  the  disposal  of  blood  bags.  They  sought  an  optimal
stationary control policy that minimized the long-term average
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cost  of the inventory.  The results  from their  model indicated
that  blood  collections  by  external  teams  outside  the  central
facility  increased  the  quantity  of  blood  in  inventory.
Hosseinifard [22] modelled the blood donation process with a
Markov chain model during a disaster period. Their approach
was  able  to  mathematically  model  the  expected  value  and
variance of daily blood donations for repeat donors. The results
established that  the steady state blood supply chain could be
destabilized during a disaster or pandemic, and an urgent blood
drive  call  could  then  trigger  a  surge  in  blood  demand.  The
authors  concluded  that,  the  lockout  period  in  which  a  donor
was  ineligible  to  donate,  contributed  to  the  decline  in  blood
collections after a blood drive call. Other researchers have used
different  approaches such as logistic  regression and negative
binomial  regression,  in  modelling  the  donation  frequency
behaviour  of  blood  donations  [23].

This study will focus on the transition of individual blood
donors  from  one  identified  state  to  another,  as  this  has  a
bearing  on  the  volume  of  blood  supplied.  The  study  seeks
further understanding of blood donation patterns in Zimbabwe.
The study describes the pattern of  blood donation status at  a
blood service  centre  in  Harare,  Zimbabwe.  A total  of  all  the
8312  new  voluntary  and  non-remunerated  blood  donors  in
2014  were  retrieved  from  the  donors’  database  forming  the
study  population  from  which  a  sample  of  450  new  blood
donors was selected. The donors were classified according to
the number of times they donated blood within a cycle of 12
months  for  a  period  of  four  years  from the  year  2014  to  the
year 2017, resulting in 1812 observations. The findings of this
study will provide useful insights to blood service managers to
ascertain  blood  donor  recruitment  and  retention  strategies,
which  have  a  bearing  on  the  blood  supply  inventory  at  the
blood centre.

The  overall  aim  of  the  paper  is  to  present  the  four-state
DTMC  model  of  blood  donations  over  a  four-year  study
period,  from  January  2014  to  December  2017.  The  specific
objectives are:

1) To explore the dynamics of blood donations in different
states determined by donation frequencies.

2)  To  perform  the  Markov  chain  analysis  based  on  the
transition of individuals between the four identified states.

3) To discuss the implication of the results to blood service
managers’ decision-making process.

The sections in this paper are organized as follows: Section
2  presents  materials  and  methods,  including  model
formulation, Section 3 focus on results, and section 4 presents a
discussion. Section 5 summarises and concludes the study.

2. MATERIALS AND METHODS

This section describes the data set and the Markov chain
technique adopted.

2.1. Description of the Data

The  study  is  based  on  blood  donation  data  collected  in
Harare, Zimbabwe over a period of four years, from 1 January
2014 to 31 December 2017. The sample size was calculated by

using the Taro Yamane formula, stated as ,  where n is
the sample size, N  is the population of the study and e  is the
error  in  the  calculation  (95%  or  0.05).  All  the  8312  new
voluntary  and  non-remunerated  blood  donors  in  2014  were
retrieved  from  the  donors’  database  thus  forming  the  study
population.  From the Taro Yamane formula,  the  sample size
was  found  to  be  382  and  was  increased  by  an  additional  70
donors to 450 donors to improve the accuracy of the estimates.
Random sampling  was  then  used  to  select  the  objects  of  the
study.  The  donors’  specific  data  on  the  donor  identification
number, age, sex, number of donations each year, and interval
between  whole  blood  donations  and  blood  group  were
extracted as secondary data from the NBSZ database. Hence,
no  ethical  considerations  were  required  since  there  was  no
direct  interaction  with  the  individual  blood  donors.
Furthermore,  the  identity  of  the  blood  donors  remained
anonymous,  only  identification  numbers  were  used  for  each
donor.  Authority  to  use  the  data  was  granted  by  the  NBSZ
Research  and  Development  department.  The  NBSZ  Harare
blood  bank  was  chosen  as  the  study  site  since  it  is  the  head
office and largest bank of the blood service, where all the blood
donation data in Zimbabwe is collated and managed.

2.2. Markov Chain Technique

The Markov chain approach described below was chosen
in the study because of its power in modelling the sequence of
events  that  change  states  over  time  for  each  individual.  The
Statistical analysis was performed using the R software, which
is an inbuilt msm version 1.4 developed by Jackson (2011). A
four-state Markov chain was used to describe the behaviour of
individual  blood  donation  occurrences  at  the  blood  service
centre.  The  states  under  consideration  are:  new  (N),  regular
(R),  occasional  (O)  and  lapsed  (L)  donors,  forming the  state
space S = {N, R, O, L}. The identified states are determined by
the frequency of blood donation for the individual as presented
in Table 1. The probability of the process being in a particular
state  was  calculated  based  on  the  Markov chain  assumption,
attaining  a  state  depends  on  the  immediately  preceding  state
only.  In  the  data  analysis,  a  Markov  chain  was  used  to
determine  the  stability  of  the  Markov  matrix,  and  the  Chi-
square was used to test for statistical significance.

Table 1. Description of Markov states.

Status Description (Donation Frequency)
1= New (N) First time donor
2 = Regular (R) At least 2 donations within 12 months
3 = Occasional (O)
4 = Lapsed (L)

One donation within 12 months
Last donation was at least 24 months ago

2.3. Markov Property

To  adequately  apply  the  Markov  chain  model,  it  is
necessary to fulfil the Markov property. The Markov property
states that the probability of a future state is independent of the
past states and depends only on the present state occupied [24].
The transition probabilities from donor state i to donor state j
depend on the current state and not historical blood donation
status.  In  other  words,  the  past  status  of  donations  is  fully
summed  up  by  the  mere  knowledge  of  the  present  state  of
blood donations. Therefore, blood donation occurrences can be

(𝑛 =
𝑁

(1+𝑁∗𝑒2)
)
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assumed or considered to be a memoryless process.

A  discrete-time  Markov  chain  can  be  described  as  a

sequence of random variables X1, X2, X3,... characterised by the
memoryless property or Markov property [25].

The Markov property states that

(1)

From  Eq.  (1),  the  distribution  of  the  next  state  (of  Xn+1)
depends  only  on  the  current  state  (Xn)  and  not  on  previous
states occupied, Xn-1,Xn-2,...,X1.

The  transition  from  state  i  to  state  j  is  defined  by  the
transition probability pij in Eq. (2) as:

(2)

Furthermore, the probability of going from state i to state j
in n steps is given by Eq. (3) as:

(3)

If the Markov chain is time-homogeneous pij = Pr (Xk+1 =
j|Xk = i) and pn

ij = Pr (Xn+k = j|Xk = i), where k > 0.

2.4. Transition Frequencies

The data on the transition frequency of donations over the
period of study can be modelled as a four-state Markov chain
with state space S = {N, R, O, L}.

The  transition  frequencies  are  given  as  the  observed
transition frequencies of blood donations to a particular state j
preceded  by  the  blood  donor  being  in  state  i  at  the  previous
donation period.

2.5. Transition Probability Matrix

It is important to define a transition matrix Pij which gives
information  on  the  probability  of  transitions  among  the
different states in the system under study. The transition matrix
probability  P  =  [pij]  shows  the  likelihood  of  blood  donation
status  staying  unchanged  or  moving  to  any  of  the  S  –  1
categories  over  the  given  time  horizon.

The  transition  probabilities  from state  i  to  state  j  can  be
constructed as the following matrix:

The probabilities of transition pij are defined as:

pii- the probability of starting in state i and ending in state i,
or remaining in a state i throughout the period.

pij - transition probability from state i to state j, .

When  pij  is  constant  and  independent  of  time  (time

homogeneous),  matrix  Pij  =  P  is  a  time  homogeneous
stochastic matrix. The probabilities must satisfy the following
conditions:

pij ≥ 0, i, j = 1,2,3,4 and ∑ pij = 1 i, j = 1,2,3,4

To analyse the Markov model on blood donations, several
assumptions were made, viz:

a)  Donor  transition  probabilities  are  constant  over  time
(time homogeneity).

b) The probability of the donor’s next transition depends
only on the current state.

c) The donor either remained in the current state or moved
to the next state.

2.6. Estimating Transition Probabilities

A  time-homogeneous  Markov  chain  model  can  be
developed from the given data. Different methods such as the
Maximum Likelihood Estimation (MLE), Bootstrap approach
and  Maximum  A  Posteriori  (MAP)  can  be  used  in  the
estimation  of  the  parameters.

Based  on  the  Markov  principle,  the  transition  events  are
independent  of  one  another  and  hence  the  likelihood  of  the
transition probability,  pij  follows a binomial model [26].  The
binomial model is given in Eq. (4) as:

(4)

Where Ni is the number of observed transitions that starts
from state i to j and,

(5)

Following  the  assumption  of  constant  transition
probabilities over the time horizon and Eq. (5), the transition
probability is estimated in Eq. (6) as:

(6)

for  i,  j  =  1,  2,  3,4  and  nij  is  the  number  of  observed
transitions  from  i  to  j  and  ∑  j  nij  =  Ni

is the sum of observed transitions from i to j.

The standard errors are expressed in Eq. (7) as:

Pr(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = Pr(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) , ∀ n ≥ 0,

𝑗, 𝑖, 𝑖𝑛−1, … , 𝑋0 = 𝑖0 ∈ 𝑆 

𝑝𝑖𝑗 = 𝑃𝑟(𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖)  for  𝑘 = 0,1, 2 … 

𝑝𝑖𝑗
𝑛 =  𝑃𝑟(𝑋𝑛 = 𝑗|𝑋0 = 𝑖)  

∀

𝑃 = [

𝑝11 𝑝12 ⋯ 𝑝1𝑛

𝑝21 𝑝22 ⋯ 𝑝2𝑛

⋮ ⋮ ⋮ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ 𝑝𝑛𝑛

]  

i≠j

 

   

̂    

∀ ∀

𝐿(𝑝𝑖𝑗|𝑁, 𝑛) = (
𝑁𝑖

𝑛𝑖𝑗
) 𝑝

𝑖𝑗

𝑛𝑖𝑗(1 − 𝑝𝑖𝑗)
𝑁𝑖−𝑛𝑖𝑗

 , 

 

̂  

∑ 𝑝𝑖𝑗 = 1𝑗   

  

̂   

𝑝 ̂𝑖𝑗
𝑀𝐿𝐸 =

𝑛𝑖𝑗

∑ 𝑛𝑖𝑗𝑗
=

𝑛𝑖𝑗

𝑁𝑖
 ,  
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(7)

The asymptotic confidence intervals for pij are expressed in
Eq. (8) as:

(8)

The associated transition probability matrix is presented as:

Where:

pij - Probability of being in state j preceded by donor being
in state i.

The  sum  of  probabilities  for  each  row  must  be  equal  to
one. For example,

pON + pOR + pOO + pOL = 1

2.7. Transition Graph

A graphical representation of the transition probabilities pij

is called a transition graph or diagram. Each possible state of i,
j ϵ S, where S = {N, R, O, L} is represented by a circle, and the
probabilities  of  non-zero  transitions  between  the  different
states  are  represented  by  arrows.  The  graph  helps  to  easily
classify the states into recurrent and transient states, and so on.

2.8. Statistical Significance of the Models

A Goodness-of-fit  test  is  conducted  to  establish  whether
the  data  used  satisfies  the  basic  assumption  of  the  Markov
chain that the current blood donation state depends on the state
of the immediate past blood donation. The variations between
the observed and expected frequencies can be evaluated using
the  Chi-square  (X2)  test.  A  contingency  table  of  frequency
distribution of transitions among states is constructed at (α  =
0.05) significance level. To validate the Markov chain models,
the hypotheses are stated as:

H0 : Blood donation occurrences are independent

H1: Blood donation occurrences are not independent

At α = 0.05 significance level and degrees of freedom, the
X2 critical value and the X2 test values are determined.

H is rejected when X2 the test value is greater than the X2

critical value or when the p – value < 0.05.

The X2 test value is calculated as:

Where i, j is the number of categories, and Oij and Eij are
observed and estimated values respectively, and

Eij = oi.xo. j / o.. where,

Oi.= ith row marginal total

O.j = jth column marginal total

O.. = Grand total

2.9. Stationary Distributions

2.9.1. Proposition 1

An irreducible, aperiodic Markov chain with a finite state
space will  settle down to its unique stationary distribution in
the long run.

In principle, the vector of steady-state probabilities π = (π1,

π2,  ... πn) can be obtained by solving the steady-state equations
expressed as in Eq. (9)

(9)

The model solves the steady-state probability distribution
of blood donor status in the long run.

2.10. First Passage Time Probabilities

The first passage time from state i to state j is the number
Tij of steps taken by the chain until it arrives for the first time at
state j given the initial state X = i. This is formulated as in Egs.
(10 and 11) below:

(10)

knowing that hij
(n) = pij.

Therefore,

(11)

3. RESULTS AND DISCUSSION

Table 2, which presents the frequency distribution of blood
donor states, shows that from the initial 450 new or first-time
donors  at  the  beginning  of  the  study  (time  =  0),  252  (56%)
donors had made repeat donations and became regular donors
by the end of the first year. These regular donors declined to
228 (50.7%) in year 2 and gradually continued the downward
trend as time passed by. Similarly, 198 (44%) of the initial new
donors had become occasional donors by the end of year 1. The
occasional  donors  also  significantly  declined  as  time
progressed.  Also,  with  the  passage  of  time,  donors  began  to
lapse from year 2 with 160 (35.6%) donors and the frequency
increased  to  204  (45.3%)  donors  in  year  3  and  250  (55.6%)
donors in year 4. These trends are visually presented by a bar
chart in Fig. (1).

𝑆𝐸(𝑝𝑖𝑗) =
�̂�𝑖𝑗

𝑀𝐿𝐸

√𝑛𝑖𝑗
   

𝐿𝑜𝑤𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗 = 𝑝𝑖𝑗 − 1.96 ∗ 𝑆𝐸(𝑝𝑖𝑗)  

𝑈𝑝𝑝𝑒𝑟𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑖𝑗 = 𝑝𝑖𝑗 + 1.96 ∗ 𝑠. 𝑒(𝑝𝑖𝑗)  

 

 

𝑃 = (
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𝑝𝑂𝑁 𝑝𝑂𝑅 𝑝𝑂𝑂 𝑝𝑂𝐿

𝑝𝐿𝑁 𝑝𝐿𝑅 𝑝𝐿𝑂 𝑝𝐿𝐿

)  
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(𝑂𝑖𝑗−𝐸𝑖𝑗)
2

𝐸𝑖𝑗

𝑁
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 𝜋𝑃 = 𝜋 , ∑ 𝜋𝑗 = 1𝑗∈𝑆    
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(𝑛)
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Fig. (1). Blood donor state distribution over the period under study.

Table 2. Frequency distribution of donor states over time.

Time Period
State 0 1 2 3 4
New 450 - - - -
Regular - 252 228 176 153
Occasional - 198 62 70 47
Lapsed - - 160 204 250

Fig. (1) shows the dominance of regular donors in year 1
and  year  2  of  252  (56%)  donors  and  228  (50.7%)  donors,
respectively. However, from year 3 onwards, donors begin to
lapse  as  indicated  by  higher  values  of  lapsed  donors  as
compared  to  others  in  year  3  and  year  4  with  204  donors
(45.3%) and 250 donors (55.6%) respectively.

3.1. Transition Frequencies

Based on the blood donation frequency classifications, the
number  of  blood  donations  within  the  study  population  at
states, namely, new (N), regular (R), occasional (O) and lapsed
(L) is presented in Table 3  as transition frequency or counts.
Table 3 shows that there are 252 occasions of regular donations
observed at  the end of  the study period from new donations,
266 occasions  of  lapsed  donations  observed  from occasional
donations and 479 occasions of regular donations observed as
repeating donations. Regular donations are a reliable source of
blood and their high frequency of donations is critical in blood
centres. However, with the passage of time, the frequency of
donations  declines  resulting  in  high  occasions  of  observed
lapsed  donations.

The  accessibility  of  the  regular  state  from  all  the  other
states is of importance as it ensures the sustainability of blood
supply.

3.2. Estimating Transition Probabilities

Using the observed transition frequencies of the donor at
the beginning of the year and then again at the end of the year,

we can estimate the probability of moving from one donation
category to another. The probability of a donor being in state j
at the end of the year given their initial state i at the beginning
of  the  year  is  given  by  a  simple  ratio  of  the  number  of
donations that began the year in state i and ended the year in
state j to the total number of donations that began the year in
state i. Table 4 shows estimates of transition probabilities over
the  study  period  using  Maximum  Likelihood  Estimation
(MLE),  Bootstrap,  and  Maximum  A  Posteriori  Estimation
(MAP) approaches. From Table 4, the MLE and MAP gave the
same transition probability matrix (pij) and LL value different
from the Bootstrap method. The bootstrap method gives unique
transition matrices depending on the number of boots applied
and  hence  different  values  of  the  Log  Likelihood  (LL)
functions  as  well  [27].  Even  though  both  the  MLE  and  the
MAP  have  an  alternating  low  and  high  estimation  of  the
standard errors SE (pij), the MLE has much lower estimations.
The  maximum  likelihood  estimation  (MLE)  was  used  to
estimate  the  transition  probabilities  and  their  respective
standard  errors.

Table  3.  Transition  frequency  of  blood  donations  at  any
state at the end of the period.

To (j)
From (i) - New Regular Occasional Lapsed Total

New 0 252 198 0 450
Regular 0 479 177 0 656
Occasional 0 64 0 266 330
Lapsed 0 14 2 348 364

The  transition  probability  matrix  is  calculated  as:  The
transition  probability  matrix  is  calculated  as:

𝑃 = [

0 0.56 0.44 0
0 0.7302 0.2698 0
0 0.1939 0 0.8061
0 0.0385 0.0055 0.956

]  
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Table 4. Estimates of transition probabilities.

Method Pij Pij LL

MLE

N R O L N R O L -
N 0 0.56 0.44 0 N 0 0.0353 0.0313 0

-925.15
R 0 0.7302 0.2698 0 R 0 0.0334 0.0203 0
O 0 0.1939 0 0.8061 O 0 0.0242 0 0.0494
L 0 0.0385 0.0055 0.956 L 0 0.0103 0.0039 0.0512

Bootstrap

R O L - R O L -
R 0.511 0.489 0 - R 0.1116 0.1116 0 -

-1625.3O 0.1336 0.2145 0.6519 - O 0.0302 0.1092 0.0805 -
L 0.0364 0.0779 0.8857 - L 0.0061 0.0268 0.1458 -

MAP

N R O L N R O L -
N 0 0.56 0.44 0 N 0.0022 0.0233 0.0233 0.0022

-925.15
R 0 0.7302 0.2698 0 R 0.0015 0.0173 0.0173 0.0015
O 0 0.1939 0 0.8061 O 0.003 0.0216 0.03 0.0219
L 0 0.0385 0.0055 0.956 L 0.0027 0.0103 0.0047 0.0115

Note: N = new, R = regular, O = occasional, L = lapsed

The transition matrix  P  shows the  probability  of  moving
from a new donation state to a normal state is 0.56, implying
that nearly half of first-time donors return to donate blood in
the early stages of their donation career. This also means that
44% of  the  first-time do  not  return  to  give  blood in  the  first
cycle  and  this  assessment  agrees  with  conclusions  made  by
other researchers [28 - 30].

The probability of remaining in the normal donation state
is 0.7302, which is fairly high compared to the probability of
moving  from  a  normal  state  to  an  occasional  state.  The
probabilities of moving from the occasional donation state to a
lapsed donation state and the probability of  remaining in the
lapsed donation state are 0.8061 and 0.956 respectively. They
are  very  high.  This  means  that,  once  the  donor  becomes
sporadic in the donation pattern, there is a very high likelihood
of  lapsing.  At  the  same  time,  lapsed  donors  have  a  higher
tendency (0.956) of not returning to donate blood. This implies
that, blood donor retention is a challenge in most blood centers
as  more  reliable  donors  are  lost  or  become  dormant  in  their

blood donation career.

To  further  analyse  the  dynamics  of  the  blood  donation
process, a transition diagram in Fig. (2) is used to represent the
transition probabilities for blood donations.

Fig.  (2)  is  a  summary  of  the  state  classifications  and
concludes that, state {New} is transient, since upon leaving the
state, there is no positive probability of returning to its original
state. In other words, once a blood donor donates for the first
time as a new donor, that state cannot be entered again. On the
other end, states {Regular, Occasional, Lapsed} are recurrent
and closed classes. Once blood donation occurs in a particular
state, return to the state can happen again several times.

It can be deduced that the Markov chain is not irreducible
(reducible) and is aperiodic.

Since  the  irreducibility  property  does  not  hold,  a  higher
dimensional approach was used. The igraph in Fig. (3) shows
that  the  communicating  class  has  strongly  connected
components  of  the  underlying  DTMC.

Fig. (2). Transition graph for blood donation state.
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Since the Markov chain was not irreducible (reducible), it
was  then  decomposed  into  transient  (Tk)  and  recurrent  (Rk)
classes. The canonical decomposition of the state space, which
is a union of closed communicating states can be presented as:

S = Transient (Tk) Closed recurent class (Rk)

{New,  Regular,  Occasional,  Lapsed}  =  {New}   {
Regular, Occasional, Lapsed }

The  initial  probability  to  be  in  a  communication  class
remain  constant  because  the  communication  class  is  closed.
Conditioned  on  being  in  the  communicating  class,  the
probability distribution of the state is given by the stationary
distribution associated with the closed communicating class.

The limit probability for the transient class is null [π1 = 0].
The steady state probabilities can be calculated for states 2,3
and 4 as [π2, π3, π4].

3.3. Statistical Significance of the Models

A  contingency  table  of  the  frequency  distribution  of
transitions  among  states  was  constructed  at  (α  =  0.05)
significance  level  as  in  Table  5  to  test  the  hypotheses:

H: Blood donations occurrence are independent

H1: Blood donations occurrence are not independent

The existence of a marginal total of zero for the new state
means that the expected frequencies will be less than 5.

The significant test was then carried out using Fisher’s test
with  a  simulated-p-value  to  cater  to  the  problem  of
computational  space  and  very  long  running  times  of  the  R
statistical programme.

The  Fisher's  exact  test  for  count  data  with  simulated  p-
value (based on 2000 replicates) yielded a p-value = 0.0004998
~  0.0005.  Since  the  p-value  from  the  output  is  less  than  the

significance  level  of  5%  p-value  =  0.0005  <  0.05),  we  can
reject  the  null  hypothesis  and  hence  conclude  that  there  is  a
significant relationship between the donations occurrence.

Table  5.  Contingency  table  of  frequency  distribution  of
transitions at any state.

To (j)
From

(i)
- New Regular Occasional Lapsed Total

New 0
252 (202.25)

* 198 (94.25) 0 (153.5) 450
Regular 0 479 (294.83) 177 (137.4) 0 (223.77) 656

Occasional 0 64 (148.32) 0 (69.12)
266

(112.56) 330

Lapsed 0 14 (163.6) 2 (76.23)
348

(124.17) 364
Total 0 809 377 614 1800

Note: *Figures in brackets represent expected values.

Therefore,  it  can  be  concluded  that  the  current  blood
donation state depends on the state of the immediate past blood
donation.

3.4. Forecasting Future Blood Donation State

In the long run, no donors will move back to become new
donors.  Therefore,  in  order  for  the  stationary  distribution  to
exist,  the  P  matrix  was  reduced  to  a  3  x  3  P*  matrix  by
excluding  the  {New}  state.

Thus, the steady-state equations are given in Eq. (12) as:

(12)

Fig. (3). The igraph of connected components

𝑃∗ = (
0.7302 0.2698 0
0.1939 0 0.8061
0.0385 0.0055 0.956

)  

( 𝜋2 𝜋3 𝜋4) (
0.7302 0.2698 0
0.1939 0 0.8061
0.0385 0.0055 0.956

) = ( 𝜋2 𝜋3 𝜋4), and, 

π2 + π3 + π4 = 1. 
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Solving  the  system  of  equations  yielded  the  following
steady  state  probabilities  in  Eq.  (13).

(13)

The stationary  distribution  in  Eq.  (13),  means  that  about
14.7% of the blood donations become regular in the long run.
A cause for concern to the blood managers is  that,  80.9% of
blood  donations  become  lapsed  in  the  long  run.  This  entails
that, blood service managers should have strategies in place to
recruit and retain donors and promote regular donations all the
time.  Occasional  donations  have  a  small  proportion  of  4.4%
and therefore, are not a very dependable source of blood since
they have a higher likelihood of lapsing.

3.5. Mean Recurrence Time

The mean recurrence time Ri gives the expected number of
steps to go back to a state if it was the initial one (expected first
return  time)  for  each  recurrent  state  in  the  transition
probabilities  matrix.  This  can  also  be  expressed  as:

where, π = [πi] where i = 2, 3, 4 are the recurrent states.

The mean recurrence time for each of the recurrent states
are presented in Table 6.

Table 6. Mean recurrence time for each recurrent state.

State πi Ri

Regular 0.1471291 6.796754
Occasional 0.04414342 22.653433
Lapsed 0.8087275 1.236510

Once the donor enters the lapsed state, the expected time to
return to the state is 1.2 steps (years) which imply that once in
the lapsed state, the donor is a step away from lapsing again. In
other  words,  if  the  donor  is  in  the  lapsed  state,  we  expect

another lapsed state in the next 1.2-time steps.

In  general,  the  table  shows  that  the  lapsed  state  is  most
likely  to  be  returned  to  if  it  was  the  initial  state.  With  the
passage  of  time,  the  lapsed  state  will  be  more  frequent  as
compared to the other states. Returning to the occasional state
after  leaving  it  is  less  frequent.  Returning  to  a  regular  state
after  leaving  it  is  moderate  (6.8  steps)  and  it  is  crucial  that
regular donations are more frequent than any other category. In
the case of occasional donations, returning to the same state is
nearly impractical (22.7 steps) as compared with other states,
hence  the  probability  of  zero  in  the  transition  probabilities
matrix.

3.6. First Passage Time Probabilities

The analysis estimates the time at which the Markov chain
visits a particular donation state for the first time. Starting with
the new state, the first passage time from the new state to the
regular state, or the occasional state or lapsed state, is given by
the following number of transitions made by the process from
the new state to any of the states for the first time during the
study period.

Table 7. First passage time probabilities when initial state is
new.

Time New Regular Occasional Lapsed
1 0 0.56 0.44 0
2 0 0.085316 0.151088 0.3546840
3 0 0.01365533 0.11032446 0.1217920
4 0 0.01343275 0.08055892 0.1074876

Table  7  shows  that  if  the  current  state  is  new,  there  is  a
higher likelihood of a regular state (0.56) in the next time step
than  that  of  experiencing  an  occasional  state.  An  associated
plot of first transition probabilities across time steps from 0 to
4 when the initial state is new, is shown in Fig. (4).

Fig.  (4)  clearly  depicts  the  first  passage  time  and
probability  when  the  initial  state  is  new.  It  shows  a  great
chance  of  regular  donation  state  in  the  next  time  step.

Fig. (4). First passage time probability given that the current state is new.

𝜋 = (𝜋2, 𝜋3, 𝜋4) = (0.1471291, 0.04414342, 0.8087275)  

𝑅𝑖 =
1

𝜋𝑖 
,  
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Fig. (5). First passage time probability given that the current state is regular.

Table  8.  First  passage  time  probabilities  when  the  initial
state is regular.

Time New Regular Occasional Lapsed
1 0 0.7302 0.2698 0
2 0 0.052314220 0.1970080 0.2174858
3 0 0.008373203 0.1438552 0.1588081
4 0 0.008236719 0.1050431 0.1273393

Table 8 shows that the probability of a regular donation in
the following time step (0.7302) if the current state is regular is
significantly greater than those of experiencing an occasional
or  lapsed  donation.  This  is  also  depicted  by  the  plot  of  first
transition probabilities across time steps from 0 to 4 when the
initial  state  is  regular,  shown  in  Fig.  (5).  Fig.  (5)  shows  the
dominance of regular donation from 0 up to 1.7-time steps.

Table  9  below  shows  that  if  the  current  state  is  an
occasional  donation,  then  there  is  a  very  high  chance  of  a
lapsed donation (0.8061) in the following time step.

Similarly, Table 10 shows that the probability of a lapsed
donation in the following time step if the current state is lapsed
donation is very high (0.956) compared to those experiencing a
regular or occasional donation in the following time step.

Table  9.  First  passage  time  probabilities  when  the  initial
state is occasional.

Time New Regular Occasional Lapsed
1 0 0.1939 0 0.8061
2 0 0.03103485 0.05674777 0
3 0 0.03052898 0.05081152 0.04217049
4 0 0.02932330 0.04606440 0.03079289

Table 10. First passage time probabilities when the initial
state is lapsed.

Time New Regular Occasional Lapsed
1 0 0.0385 0.0055 0.956
2 0 0.03787245 0.01564530 0.004433550
3 0 0.03637675 0.02254171 0.008373203
4 0 0.03494409 0.02708830 0.006346050

Figs.  (6  and  7)  show  greater  probabilities  of  a  lapsed
donation  state  in  the  next  time  step  if  the  current  state  is  an
occasional or lapsed donation, respectively.

4. DISCUSSION

The  main  aim of  this  study  is  to  provide  information  on
blood donor behaviour throughout their donation career. Blood
donor  behaviour  influences  blood  bank  levels.  The  study
suggested  that  discrete-time  Markov  chains  can  be  used  to
model  blood  donor  status  changes  throughout  the  blood
donation  career.

The  Markov  chain  model  is  used  to  describe  changes  in
blood  donor  status  over  a  four-year  period.  This  is  achieved
using  blood  donation  data  from  the  NBSZ’s  Harare  blood
centre in Zimbabwe as a case study. The study systematically
evaluated the performance of a Markov chain model in which a
blood  donor  may  experience  more  than  one  type  of  event
during  their  donation  career.  The  events  are  described  as
transitions  between  four  states,  viz:  new,  regular,  occasional
and lapsed states.  The study is  an  alternative  method for  the
analysis of multiple outcomes in a longitudinal construct to the
blood  donor  behavioural  problem.  This  approach  has  the
advantage  of  preserving  information  from  individuals  being
followed  up,  which  is  not  the  case  with  other  statistical
techniques  such  as  logistic  regression.
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Fig. (6). First passage time probability given that the current state is occasionally.

Fig. (7). First passage time probability given that the current state is lapsed.

The analysis showed that the blood donation process could
be described as a stochastic process that satisfies the Markov
property.  The  Fisher's  exact  test  was  used  to  test  for  the
significance  of  the  models,  hence  the  justification  of  the
application of the Markov chain technique. The p-value from
the Fisher’s test output was less than the significance level of
5% (p – value = 0.0005 < 0.05), hence the null hypothesis of
independent  blood  donation  occurrences  was  rejected.  This
means  that  there  was  a  significant  relationship  between  the
donation  occurrences.  This  led  to  the  conclusion  that  the
current  blood  donation  state  depended  on  the  state  of  the
immediate  past  blood  donation.

The  transition  probabilities,  steady  state  probability
distribution,  mean  recurrence  time  and  first  passage  time
probabilities  were  determined  using  the  blood  donation  data
collected. These statistics are vital in making inferences about
the  blood  donor  population  and  blood  bank  levels.  First
passage  time  probabilities  give  invaluable  insights  into  the

transitions  of  first-time  donors.  New  donors  had  a  higher
likelihood (0.56) of transitioning to a regular state in the next
time step when compared to any other state. This is a positive
indicator  to  decision-makers,  that  at  least  half  of  the  new
donors would return to donate in the next donation period. On
the other  hand,  occasional  donors  had a  very high chance of
transitioning to lapsed donors (0.8061) in the following time
step, thus depleting the blood donor pool.

The  maximum likelihood  estimation  (MLE)  method  was
used to estimate the transition probabilities, which formed the
backbone  of  the  study.  The  transient  nature  of  the  regular,
occasional and lapsed donations states allowed blood donation
to occur in a particular state with the possibility of returning to
that state again several times. The irreducibility property was
attained  using  a  higher  dimensional  approach  and  canonical
decomposition,  thus  enhancing  the  existence  of  steady  state
distribution. The analysis shows that 44% of first-time donors
do  not  return  for  further  donations  in  the  long  run.  This
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confirms  conclusions  by  other  researchers  that  a  significant
proportion  of  first-time  donors  do  not  become repeat  donors
[30, 31]. Blood banks are often faced with perennial problems
of reduced donation frequencies and donor lapsing. This was
also  evidenced  by  the  steady  state  probabilities,  with  about
80.9%  of  blood  donors  lapsing  in  the  long  run  compared  to
14.7% of the blood donors becoming regular in the long run.
This  calls  for  blood service  managers  to  put  interventions  in
place  that  promote  blood  donor  retention  to  safeguard  the
sustainability  of  the  blood inventory.  Other  researchers  have
associated  the  dynamics  in  blood  donor  state  transitions  to
socio-demographic characteristics of blood donors since they
are deemed to have a bearing on blood donation patterns [29,
32].

CONCLUSION

The analysis in this paper provides some insights into the
transition probabilities among the blood donor states, and this
has implications for future blood donors’ pool and blood bank
inventory in Zimbabwe. The paper presented an approach for
modelling blood donation states based on a four-state discrete-
time  Markov  chain  (DTMC)  using  the  blood  donation  data
collected  for  four  consecutive  years.  The  Markov  chain
approach  has  been  shown  to  be  a  plausible  model  through
conceptual  and  statistical  analysis.  The  findings  have
implications  for  studies  in  which  blood  donor  status  is  of
interest,  especially  in  donor  recruitment,  retention  and  other
blood  bank  inventory  management  strategies  in  Zimbabwe.
The study results  have  shown that  the  Markov chain  models
established  richer  insights  about  the  changes  in  blood  donor
status  over  time.  The  decline  in  the  number  of  donors  who
make  repeat  donations  is  a  worrisome  trend,  since  regular
donations  are  the  lifeline  of  any  blood  service  centre.

The transition probability matrix was used to explain the
dynamics of changes in the blood donation process and blood
donor  status.  A  time-homogeneous  Markov  chain  was  fitted
from the given blood donation data. The maximum likelihood
estimator (MLE) was employed to estimate the pij entry [33].
Findings from this study showed that, when new or first-time
blood  donors  enter  the  blood  donation  system,  at  least  half
(56%) of them return for repeat donations during the first year
of  their  donation  career,  which  gradually  declines  in  the
succeeding years. Within the third and fourth years of donating
blood, the tendency to lapse or become dormant increases. This
is further revealed by the long run probabilities, which indicate
that as time steps increases, lapsed donations are common with
a  probability  of  0.8087.  The  data  analysis  also  showed  that,
once donations become sporadic or occasional and lapsed, the
chances  of  becoming  repeat  donations  are  very  low,  with
probabilities of moving to regular donations being 0.1939 and
0.0385, respectively.

Depending on the current state of donation, if either new or
regular donation is the current state, donors are likely to move
to regular donation in the following time step (year). Similarly,
if the current state is either occasional or lapsed, then there is a
greater probability of a donor being in the lapsed donation state
in the following time step (year).

The  results  from  this  study  will  help  blood  service

managers to make informed decisions in future planning and
policy formulation in the blood supply chain. Such policies are
mainly on the interventions to sustain the supply of blood such
as  blood  donor  recruitment  and  retention.  With  a  greater
proportion  of  donors  becoming  inactive,  as  indicated  by  the
results,  blood  authorities  need  to  be  proactive  and  motivate
new and occasional donors to return for further donations than
be reactive when blood is in short supply.
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