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Abstract:

Background:

Frailty models have been proposed to analyse survival data, considering unobserved covariates (frailty effects). In a shared frailty model, frailties
are common (or shared) amongst groups of individuals and are randomly distributed across groups.

Objective:

In this paper, the authors compared the semi-parametric model to shared frailty models by studying the time-to-death of patients with multidrug-
resistant tuberculosis (MDR-TB).

Methods:

Secondary data from 1 542 multidrug-resistant tuberculosis patients were used in this study. STATA software was used to analyse frailty models
via the streg command.

Results:

Of 1 542 patients diagnosed with MDR-TB, 245 (15.9%) died during the study period; 77 (5.0%) had treatment failure; 334 (21.7%) defaulted; 213
(13.8%) completed treatment; 651 (42.2%) were cured of MRD-TB; and 22 (1.4%) were transferred out. The results showed that 797 (51.7%) were
females, and the majority were aged 18 – 30 and 31 – 40 years (35.5% and 35.7% respectively). Most of the patients (71.3%) were HIV-positive.
The results also showed that most patients (95.7%) had no previous MDR-TB episodes, and 792 (51.4%) had no co-morbidities. The estimate of
the variance for the frailty term in the Weibull gamma shared frailty model was 2.83, which is relatively large and therefore suggests the existence
of heterogeneity.

Conclusion:

The Laplace transform of the frailty distribution plays a central role in relating the hazards, conditional on the frailty, to the hazards and survival
functions observed in a population.
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1. INTRODUCTION

Time-to-event data measure the time elapsed from a given
origin  to  the  occurrence  of  an  event  of  interest.  Most
commonly,  survival  data  are  handled  using  the  proportional
hazards  (PH)  regression  model  popularized  by  [1].  Correct
inference based on those PH models requires independent and
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identically distributed samples. The PH assumption states that
the ratio of the hazards between any two individuals is constant
over  time,  and  a  non-parametric  “baseline  hazard  gives  the
shape of the hazard”. Subjects may be exposed to different risk
levels,  even after controlling for known risk factors,  because
some relevant covariates are often unavailable to the researcher
or are even unknown (univariate case). The study population
may also be divided into clusters so that subjects from the same
cluster  behave  more  cohesively  than  subjects  from  different
clusters (multivariate case).
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A  frailty  model  introduced  by  [2]  that  quickly  gained
popularity  in  econometrics  [3],  demographics  [4]  and
biostatistics [5] is a heterogeneity model where the frailties are
assumed to be individual,  and the frailty has a multiplicative
effect  on  the  baseline  hazard  function.  The  estimate  of  the
random  effect  is  assumed  to  have  a  unit  mean  and  finite
variance. Individuals with a frailty greater than one are said to
be frailer and will have an increased risk of failure. When the
variance of the frailty term is equal to zero, this indicates that
observations from the same group are independent. Therefore,
when the standard model fails to account for all the variability
in the observed failure times, frailty models provide a useful
alternative to a standard survival model. The main assumption
of a frailty model is that information about hidden internal or
external factors is contained in the shape and structure of the
hazard function and the form of the frailty distribution [6].

Frailty  models  have  two  broad  classes,  namely  models
describing  the  univariate  survival  times  and  multivariate
models. Frailty models for univariate data have long been used
to  account  for  heterogeneous  times-to-failure.  The  term
‘frailty’ was first suggested by [2] in the context of mortality
studies, and [7] incorporated the frailty concept into a study of
the duration of unemployment. The shared frailty model may
be considered a random-effects model for survival data because
the  frailty  effect  is  shared  amongst  clusters  of  individuals.
Early considerations of these models can be found in [8 - 12].

Although several research papers have been published on
frailty models, even in the modelling of infectious diseases [13,
14], to the best of the authors’ knowledge, no study has been
conducted  in  KwaZulu-Natal,  South  Africa,  applying  shared
frailty  models  to  survival  data.  This  paper  is  intended  to
demonstrate the analysis of frailty models using secondary data
from 1 542 MDR-TB patients who were treated in KwaZulu-
Natal,  South  Africa.  This  study  used  the  statistical  software
called STATA version 19 to analyse data.

2. METHODS

2.1. Data Source

The data used in this study are described in [15]. The study
protocol was approved by the University of KwaZulu-Natal’s
Biomedical Research Ethics Committee (Ref: BF052/09) and
by  the  KwaZulu-Natal  Department  of  Health.  According  to
[15],  they  used  data  collected  by  health  workers  for  clinical
care. No risks were posed to the patients and informed consent
was waived by the ethics committee. The authors report that to
protect  patient  confidentiality  and  anonymity,  the  databases
were de-identified and access was strictly limited.

According  to  the  researchers  [15],  their  study  was  a
prospective  study  of  4  rural  areas  in  KwaZulu-Natal  (South
Africa) between 1 July 2008 and 30 June 2012. In this study,
the authors used data from 1 542 MDR-TB patients from five
TB  centres  (four  decentralized  sites  and  one  centralized
hospital). Time-to-death of an MDR-TB patient is the response
variable of interest.

2.2. Model Development

In  general,  frailty  models  are  the  equivalent  of  random-

effects  or  mixed  models  in  survival  analysis.  Suppose  that  X
represents a covariate vector, let T be a non-negative random
variable representing an individual survival time, with t being a
realisation of that random variable, then the Cox proportional
hazard (PH) model is:

(1)

where X = [X1, X1,...,Xn] and β = [β1, β1,...,βn] is a regression
parameter vector.

A  frailty  model  introduces  the  unobserved  components
represented by a vector denoted as U,  and (1) is  modified as
follows:

(2)

Let Z = eU represents the frailty term, then the frailty model
is:

(3)

The  baseline  hazard  function  h0  (t)  can  be  chosen  non-
parametrically  or  parametrically  (Weibull,  exponential,
Gompertz, etc.). There are two distinguishable broad classes of
frailty  models,  namely  the  univariate  frailty  model  and  the
multivariate frailty model.

2.3. The Univariate Frailty Model

Suppose that an individual is affected with MDR-TB and
has  a  survival  time  denoted  as  ti,  covariate  vector  Xi,  with  a
frailty term denoted as Zi [2], stated that the hazard function of
the individual i is given as:

(4)

Since Zi is an unobservable random variable varying over
the sample. Those individuals who possess Zi > 1 are said to be
more  frail  and  will  have  an  increased  risk  of  failure.
Conversely, those individuals with Zi < 1 are less frail and will
tend to survive longer.

The model of an individual i can also be represented by its
conditional survivor function:

(5)

and   is  the  cumulative  baseline  hazard
function.

The model described above is at the individual level, but
this individual model is not observable [16]. It is vital to state
that  this  is  the  reason  why  the  model  is  considered  at  a
population level. Survival of the total population is the mean of
the individual survival functions.

The  unconditional  survival  function  of  an  individual  i  at

   ℎ(𝑡, 𝑋) = ℎ0(𝑡) × 𝑒𝑋𝑇𝛽 ,

ℎ(𝑡, 𝑋, 𝑈) = ℎ0(𝑡) × 𝑒𝑋𝑇𝛽+𝑈         

                          = ℎ0(𝑡) × 𝑒𝑈 × 𝑒𝑋𝑇𝛽,   

 ℎ(𝑡, 𝑋|𝑍) = 𝑍ℎ0(𝑡) × 𝑒𝑋𝑇𝛽.     

   ℎ𝑖(𝑡𝑖 , 𝑋𝑖|𝑧𝑖) = 𝑧𝑖ℎ0(𝑡𝑖) × 𝑒𝑋𝑖
𝑇𝛽.   

𝑆𝑖(𝑡𝑖 , 𝑋𝑖|𝑧𝑖) = exp (−𝑧𝑖𝑒𝑋𝑖
𝑇𝛽  ∫ ℎ0(𝑠, 𝑋𝑖|𝑧𝑖)

𝑡𝑖

0

𝑑𝑠) 

                         = exp (−𝑧𝑖𝐻0(𝑡𝑖) × 𝑒𝑋𝑖
𝑇𝛽),                  

 𝐻0(𝑡𝑖) = ∫ ℎ0(𝑠)𝑑𝑠
𝑡𝑖

0
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the population level is:

Knowing the frailty distribution can help one determine an
individual's  unconditional  survival  function,  and  this  is  the
same for the unconditional hazard (average hazard).

2.4. The Distribution of Frailty

The  average  hazard  of  an  individual  i,  given  the
conditional  hazard,  is:

assume that h0 (ti) is a constant, then:

where  is the mean frailty.

Suppose Xi is one covariate representing a variable “study
site”, which is 0 = Centralized hospital, 1 = Decentralised sites:

(6)

This shows that the average hazard depends on the frailty
distribution.

Many  distributions  can  be  chosen  for  frailty,  including
gamma frailty; the log-normal distribution; the positive stable
frailty  model;  the  inverse  Gaussian  frailty  model;  and  the
compound Poisson frailty model, amongst others [17, 18]. The
gamma  distribution  has  been  used  in  most  applications  and
widely applied as a mixture distribution due to the simplicity of
the Laplace transformation [2, 8, 19 - 21].

Where the parameter s is a complex number:

s = a + ib

with a and b real numbers.

Many calculations can be performed based on the Laplace
transform. The importance of the Laplace transform for these
calculations has previously been demonstrated [22]. The mean
and  variance  of  the  Gamma  distribution  can  be  obtained  by

using the first and second derivatives of the Laplace transform,
respectively.

on evaluating the derivatives at s = 0,

and

Another reason that this distribution has been used in most
applications published to date is that it is a flexible distribution
that takes a variety of shapes as α varies. That is:

Where  α  and  β  are  the  shape  and  scale  parameters,
respectively.

The mean is  and the variance is .

If  α  =  1,  it  is  identical  to  the  well-known  exponential
distribution. When α is large, it takes a bell-shaped form. The
gamma distribution fits very well with failure data because it is
easy  to  derive  the  closed-form  expressions  of  unconditional
survival, cumulative density and hazard function.

2.5. Multivariate Frailty Model

Survival  data  analysis  always  assumes  that  the  time-to-
event of the individuals considered in the study is independent.
However, this may not always be the case because there is a
possibility  that  the  survival  times  of  individuals  in  the  same
group, for example, in a family or community, are correlated.
The  correlation  between  survival  time  violates  the
independence  assumption,  and  such  data  cannot  be  analysed
using the univariate semi-parametric model. According to [23],
the  data  with  correlated  survival  times  are  known  as
multivariate  survival  data,  and  models  developed  to  analyse
such  data  include  the  shared  frailty  model,  which  was
previously  introduced  [2,  8].

The  model  is  called  the  shared  frailty  model  because
individuals in the same cluster are assumed to share the same
frailty  [6,  24].  The  survival  times  of  individuals  within  the
same group are assumed to be conditionally dependent, while
the  frailty  across  the  groups  is  assumed  to  be  independent.
However,  when  a  frailty  term  represents  the  individual's
unmeasured  or  unobserved  covariates  after  considering  the
measured covariates, it is called the univariate frailty model.

Let N denote the number of individuals in a given cohort,
with each individual in the cohort assigned to a cluster. Let the

𝑆𝑖(𝑡𝑖 , 𝑋𝑖) = 𝐸[𝑆𝑖(𝑡𝑖 , 𝑋𝑖|𝑧𝑖)]                        

= 𝐸 [exp (−𝑧𝑖𝐻0(𝑡𝑖) × 𝑒𝑋𝑖
𝑇

)].

ℎ̅𝑖(𝑡𝑖 , 𝑋𝑖) = ∫ 𝑧𝑖ℎ0(𝑡𝑖) × 𝑒𝑋𝑖
𝑇𝛽

∞

0

𝑓𝑧(𝑧𝑖)𝑑𝑧𝑖 , 

ℎ̅𝑖(𝑡𝑖 , 𝑋𝑖) = ℎ0(𝑡𝑖) × 𝑒𝑋𝑖
𝑇𝛽 ∫ 𝑧𝑖

∞

0

𝑓𝑧(𝑧𝑖)𝑑𝑧𝑖 ,

= 𝑧�̅�ℎ0(𝑡𝑖) × 𝑒𝑋𝑖
𝑇𝛽,    

 𝑧�̅� = ∫ 𝑧𝑖
∞

0
𝑓𝑧(𝑧𝑖)𝑑𝑧𝑖 

     ℎ̅𝑖(𝑡𝑖 , 𝑋𝑖) = 𝑧�̅�ℎ0(𝑡𝑖) × 𝑒𝛽 .    

𝐿{𝑓(𝑧)}(𝑠) = ∫ 𝑓(𝑧)exp (−𝑧𝑠)𝑑𝑧

∞

0

 

                       = ∫
𝛽𝛼𝑧𝛼−1𝑒−𝛼𝑧

𝛤(𝛼)

∞

0

exp (−𝑧𝑠)𝑑𝑧 

=
𝛽𝛼

(𝑠 + 𝛽)
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𝐿(1)(𝑠) =
−𝛼𝛽𝛼

(𝑠 + 𝛽)𝛼+1
 

𝐿(2)(𝑠) =
𝛼(𝛼 + 1)𝛽𝛼
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𝐸(𝑍) = −𝐿(1)(0) =
𝛼

𝛽
   

𝑉𝑎𝑟(𝑍) = 𝐿(2)(0) − (−𝐿(1)(0))
2
 =

𝛼

𝛽2
.     

              

𝑓(𝑧, 𝛼, 𝛽) =
𝛽𝛼𝑧𝛼−1exp (−𝛽𝑧)

𝛤(𝛼)
,          𝛼 > 0,          𝛽 > 0         and       𝑧 > 0. 

 𝐸 (𝑍)  =
𝛼

𝛽
 𝑉 (𝑍)  =

𝛼

𝛽2. 
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total number of clusters be denoted by G such that, given the ith

cluster consists of ni individuals, then:

is the censoring indicator. The response variable will be a
combination of time-to-event and δi, which takes a value 1 if
the time-to-event is observed and 0 if censored or the event did
not occur.

The hazard function of the jth individual of the ith cluster is
given as:

(7)

where Xij is a vector of covariates for individual j in the ith

group, ui is the unobserved covariates and h0 (t) is the baseline
hazard function.

Since zi = eui, the hazard function can be written as:

(8)

Here,  the   are  independent  with  an  identical
probability density function denoted as f(z).

The full likelihood of the shared frailty model is given as
follows:

(9)

2.6. Parametric Frailty and Shared Frailty

Now  consider  a  parametric  survival  model  which  is
characterized  by  its  hazard  function,  h(t).  The  effect  of  any
covariate  is  always  found  in  the  definitions  of  all  these
functions, whether one parameterizes the model as having PH
with  respect  to  changes  in  covariate  values  or  accelerated
failure  time  (AFT)  due  to  the  covariates.  For  instance,  in  a
Weibull  PH  regression,  the  hazard  function  at  time  t  for
individual  i  with  covariate  vector  xi  is:

(10)

The  shape  parameter  p  and  regression  coefficients  β  are
estimated from the data. The streg contains a list of those forms
of h(t) currently available in STATA. In the univariate case, a
frailty model introduces an unobservable multiplicative effect z
on the hazard, so that conditional on the frailty

(11)

where z is some random positive quantity assumed to have
a unit mean equal to one and variance equal to θ.

A  multivariate  survival  model  is  an  extension  of  the
univariate frailty model, where individuals are allowed to share
the  same frailty  value.  Sharing  a  frailty  value  also  generates
dependence  between  those  individuals  who  share  frailties,

whereas  conditional  on  the  frailty,  those  individuals  are
independent. For data consisting of n clusters with the ith cluster
comprised of ni individuals (i = 1,...,n), (11) generalizes to

for j = 1,2,...,ni with hij(t) = h(t|xij). That is, for any member
of the ith cluster, the standard hazard function is now multiplied
by the shared frailty zi. For instance, in the case of Weibull PH
regression, the conditional hazard for an individual is given by

and the conditional survival function is

2.7. Statistical Methods

Data  analyses  were  conducted  using  STATA  version  19
and  the  Statistical  Package  for  the  Social  Sciences  (SPSS
version  25).  Basic  descriptive  statistics,  such  as  frequencies
and  percentages  of  demographics,  were  calculated.  The
proportion of successful treatment is those cured and treatment
completed,  and  those  patients  who  did  not  finish  treatment,
such  as  those  loss  to  follow-up and  failed,  are  considered  to
have poor treatment outcomes.

Firstly,  the  authors  fit  a  Cox  PH  model  and  then  fit  a
Weibull  regression  model  with  gamma-distributed
heterogeneity. Since correlation within a “site” might exist for
a given patient,  one can model this as a shared frailty model
where  the  sharing  occurs  at  the  patient  level.  This  is  easily
done by adding the option shared (patient) to the streg, frailty.

Fig.  (1).  Treatment  outcomes  of  MDR-TB  patients  between  1  July
2008 and 30 June 2012.

3. RESULTS AND DISCUSSION

The study considered an MDR-TB data set consisting of 1
542 patients with time-to-death as the primary outcome of this
study.  A  total  of  245  (15.9%)  patients  with  MDR-TB  died
between  1  July  2008  and  30  June  2012,  and  77  (5.0%)  had
treatment  failure.  A  total  of  334  (21.7%)  patients  were

∑ 𝑛𝑖

𝐺
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defaulted, 213 (13.8%) completed treatment; 651 (42.2%) were
cured of MRD-TB; and 22 (1.4%) were transferred out (Fig. 1
and Table 1).

The  baseline  demographics  of  the  patients  treated  with
MDR-TB  showed  that  797  (51.7%)  were  females,  and  the
majority of the patients were aged 18 – 30 years and 31 – 40

years  (35.5%  and  35.7%,  respectively).  Most  of  the  patients
(71.3%) were HIV-positive. The results also show that most of
the patients (95.7%) had no previous MDR-TB episodes, and
792  (51.4%)  had  no  co-morbidities.  Furthermore,  1510
(97.9%)  of  the  patients  had  pulmonary  TB  (Table  2).  The
median follow-up time was 26.8 months.

Table 1. Treatment outcomes of patients with MDR-TB.

Treatment Outcomes Site 1 Site 2 Site 3 Site 4 All Decentralized Hospitals Centralized Hospital
n = 125 n = 142 n = 202 n = 261 n = 730 n = 812

Died 17 (13.6) 21 (14.8) 25 (12.4) 69 (26.4) 132 (18.1) 113 (13.9)
Failed 7 (5.6) 10 (7.0) 12 (5.9) 19 (7.3) 48 (6.6) 29 (3.6)

Defaulted 9 (7.2) 18 (12.7) 50 (24.8) 28 (10.7) 105 (14.4) 229 (28.2)
Completed treatment 12 (9.6) 8 (5.6) 19 (9.4) 15 (5.7) 54 (7.4) 159 (19.6)

Cured 78 (62.4) 79 (55.6) 94 (46.5) 120 (46.0) 371 (50.8) 280 (34.5)
Transferred out 2 (1.6) 6 (4.2) 2 (1.0) 10 (3.8) 20 (2.7) 2 (0.2)

Note: *Data are number (%).

Table 2. Demographic characteristics of the study participants (N=1542).

Variables

n (%)/Median (IQR)
Site 1

(n=125)
Site 2

(n=142)
Site 3

(n=202)
Site 4

(n=261)
All decentralized
hospitals (n=730)

Centralized
hospital (n=812)

TOTAL
(n=1542)

Baseline weight (kg) 50 (43 - 59)
Age (in years) 34 (28 - 42)
Age groups -

18 - 30 42 (33.6) 44 (31.0) 74 (36.6) 85 (32.6) 245 (33.6) 303 (37.3) 548 (35.5)
31 - 40 43 (34.4) 55 (38.7) 70 (34.7) 90 (34.5) 258 (35.3) 292 (36.0) 550 (35.7)
41 - 50 30 (24.0) 27 (19.0) 40 (19.8) 56 (21.5) 153 (21.0) 145 (17.9) 298 (19.3)

50+ 10 (8.0) 16 (11.3) 18 (8.9) 30 (11.5) 74 (10.1) 72 (8.9) 146 (9.5)
Gender -

Male 57 (45.6) 60 (42.2) 104 (51.5) 125 (47.9) 346 (47.4) 399 (49.1) 745 (48.3)
Female 68 (54.4) 82 (57.7) 98 (48.5) 136 (52.1) 384 (52.6) 413 (50.9) 797 (51.7)

HIV status -
Positive 96 (76.8) 108 (76.1) 123 (60.9) 197 (75.5) 524 (71.8) 576 (70.9) 1100 (71.3)
Negative 28 (22.4) 30 (21.1) 66 (32.7) 38 (14.6) 162 (22.2) 211 (26.0) 373 (24.2)
Unknown 1 (0.8) 4 (2.8) 13 (6.4) 26 (10.0) 44 (6.0) 25 (3.1) 69 (4.5)

Previous MDR-TB
episodes -

No previous episodes 119 (95.2) 124 (87.3) 184 (91.1) 246 (94.3) 673 (92.2) 802 (98.8) 1475 (95.7)
One previous episode 5 (4.0) 18 (12.7) 18 (8.9) 14 (5.4) 55 (7.5) 9 (1.1) 64 (4.1)

Two previous episodes 1 (0.8) 0 (0) 0 (0) 1 (0.3) 2 (0.3) 1 (0.1) 3 (0.2)
Comorbidities -

No other diseases 6 (40.0) 2 (15.4) 1 (100) 0 (0) 9 (20.5) 780 (97.6) 789 (93.6)
Diabetes 1 (6.7) 1 (7.7) 0 (0) 8 (53.3) 10 (22.7) 10 (1.3) 20 (2.4)
Epilepsy 4 (26.7) 3 (23.1) 0 (0) 1 (6.7) 8 (18.2) 4 (0.5) 12 (1.4)

Hearing loss prior to start of
treatment 2 (13.3) 3 (23.1) 0 (0) 5 (33.3) 10 (22.7) 1 (0.1) 11 (1.3)

Renal problems 1 (6.7) 2 (15.4) 0 (0) 0 (0) 3 (6.8) 0 (0) 3 (0.4)
Substance abuse 1 (6.7) 2 (15.4) 0 (0) 1 (6.7) 4 (9.1) 0 (0) 4 (0.5)

Psychiatric problems 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (0.5) 4 (0.5)
Type of TB -
Pulmonary 122 (97.6) 131 (92.3) 199 (98.5) 254 (97.3) 706 (96.7) 804 (99.0) 1510 (97.9)

Extra pulmonary 3 (2.4) 11 (7.7) 3 (1.5) 7 (2.7) 24 (3.3) 8 (1.0) 32 (2.1)
Note: *IQR = Interquartile range.
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Table 3. Parameter estimates (S. E) in the Cox model and parametric shared frailty models applied to the MDR-TB data.

Variables Cox Regression Model
Weibull Regression Model with

Gamma Shared Frailty
Log-normal Regression Model with

Gamma Shared Frailty
Coef. (95% CI) S.E P-value Coef. (95% CI) S.E P-value Coef. (95% CI) S.E P-value

Baseline weight (kg)
-0.03 (-0.04 to

-0.02) 0.01 0.00
0.07 (0.04 to

0.09) 0.01 0.00
0.06 (0.04 to

0.09) 0.01 0.00
Study sites

- - -Centralized hospital (Ref)

Decentralized sites
0.45 (-0.51 to

1.41) 0.49 0.36
-1.15 (-4.01 to

1.72) 1.46 0.43
-1.25 (-4.12 to

1.63) 1.47 0.40
Age group (years)

- - -18-30 (Ref)

31-40
0.53 (0.02 to

0.85) 0.26 0.04
-1.48 (-2.68 to

-0.28) 0.61 0.02
-1.42 (-2.60 to

-0.23) 0.61 0.02

41-50
0.60 (-0.01 to

1.21) 0.31 0.05
-1.19 (-2.56 to

1.19) 0.70 0.09
-1.13 (-2.56 to

1.29) 0.73 0.12

>-51
0.48 (-0.27 to

1.23) 0.38 0.21
-1.44 (-1.18 to

2.31) 0.89 0.11
-1.27 (-2.99 to

1.45) 0.88 0.15
Gender

- - -Male (Ref)

Female
0.52 (0.09 to

0.96) 0.22 0.02
-1.19 (-2.17 to

-0.22) 0.50 0.02
-1.32 (-2.32 to

-0.33) 0.51 0.01
HIV status

- - -Positive (Ref)

Negative
-0.06 (-0.56 to

1.45) 0.26 0.82
0.15 (-0.96 to

1.26) 0.57 0.79
0.17 (-0.98 to

1.31) 0.58 0.78
Type of TB

- - -Pulmonary (Ref)

Extrapulmonary
0.25 (-1.17 to

1.67) 0.72 0.73
-0.78 (-4.33 to

2.77) 1.81 0.67
-0.72 (-4.17 to

2.73) 1.76 0.68
Comorbidities conditions

- - -No (Ref)

Yes
-0.33 (-1.42 to

1.76) 0.56 0.55
0.75 (-2.29 to

3.79) 1.55 0.63
0.85 (-2.18 to

3.89) 1.55 0.58
Previous MDR-TB episodes

- - -No (Ref)

Yes
-0.19 (-1.62 to

1.24) 0.73 0.80
0.49 (-3.13 to

4.10) 1.85 0.79
0.47 (-3.16 to

4.11) 1.85 0.80
Likelihood ratio test on 10 df 42.68, p-value < 0.01 40.57, p-value < 0.01 39.99, p-value < 0.01

θ (S.E) - 2.83 (1.89) 0 (0.09)
Likelihood ratio test of è - chibar2(01) = 4.19, p-value = 0.02 chibar2(01) = 0, p-value = 1.00

Note: • S. E = Standard error; CI = Confidence interval.

The results in Table 3 show the Cox regression parameter
estimates, Weibull shared frailty parameter estimates and log-
normal frailty parameter estimates. The results also show the
chi-square test statistic (X2 = 4.19) for a Weibull frailty model
with  a  p-value  of  0.02.  The  estimate  of  the  variance  for  the
frailty term in the Weibull gamma shared frailty model is 2.83,
which  is  different  from  zero.  This  implies  that  unobserved
heterogeneity was present at the site level. Therefore, one can
use  the  Weibull  frailty  shared  model  because  the  results
suggest  that  patients  at  some  sites  were  associated  with  a
higher  risk  of  dying  than  the  other  sites  and  there  is  a
difference  in  the  conclusions  drawn  about  the  dataset.

Further  evidence  is  the  differences  in  the  coefficient
estimates between the Weibull frailty model and the ordinary
Cox  regression  model.  Hazard  ratios  now  have  an

interpretation  that  is  conditional  on  frailty.  Note  that  the
standard  deviation  increases  in  the  gamma  frailty  and  log-
normal  models.  The  log-normal  model  results  in  a  slightly
lower likelihood ratio test. If one looks at the results produced
by the log-normal frailty model, the frailty variance is zero and
is not significant. This implies that all the differences amongst
the mortality rates of the MDR-TB patients are explained by
the observed fixed covariates stated in the model. That is, the
log-normal  model  indicates  that  there  is  no  unobserved
heterogeneity amongst  groups (sites),  but  the estimate of  the
standard errors increased.

When  comparing  the  estimates  of  the  standard  Cox  PH
model  and  those  of  the  Weibull  gamma  frailty  model,  an
increase  in  the  estimates  was  observed  after  correcting  for
frailty  (Table  3).  Factors  strongly  associated  with  mortality
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rates were identified by examining their confidence intervals
(CIs) and p-values. Factors whose CIs include 1 implied that
these  factors  were  insignificant  and  these  results  were
confirmed  by  p-values  >  0.05  significance  level.  Baseline
weight,  age  group  (31-  40)  and  gender  were  found  to  be
strongly associated with mortality rates. The results show that
patients  treated  in  decentralized  sites  had  a  lower  death  rate
than  those  treated  in  centralized  sites,  but  this  was
insignificant.

4. DISCUSSION
Frailty  models  are  mixture  of  models  within  survival

analysis.  The  estimation  in  this  general  frailty  model
framework is performed by using a simple two-step procedure
where  the  fixed  effects  and  the  individual  frailty  terms  are
estimated while keeping the frailty variance parameter fixed.
This procedure leads to simple estimation equations but results
in an underestimation of the estimated variances of the fixed
effects  parameters  because  the  variance  estimation  does  not
take into account the variability in the estimation of è^.

The  objective  of  this  paper  was  to  assess  the  effect  of
omitting unmeasurable variables in the modelling exercise. The
researchers  began by fitting a semi-parametric  stratified Cox
regression model with random effects and then fitted a Weibull
parametric stratified model with random effects. This was an
extension of the stratified Cox regression model with the site
variable as the stratifying variable. The results of the exercise
suggested  that  there  exists  significant  unobserved
heterogeneity. When accounting for site effects, the confidence
intervals are wider in the Weibull frailty model, which implies
that  there  is  much  more  heterogeneity  at  decentralized  sites
than in the centralized hospital.

The  other  factors  included  in  the  analysis,  namely  HIV
status,  type  of  TB,  previous  MDR-TB  episodes  and  co-
morbidities, affect on the survival time of MDR-TB patients.
Still, there was not enough evidence from the data to confirm
their association with this survival time.

The  results  in  this  paper  do  not  deviate  much  from  the
findings  obtained  by  [27],  who  concluded  that  frailty  is  a
strong predictor of mortality, as has been shown by previous
systematic  reviews  [28  -  30].  Two  of  these  reviews
systematically conducted studies that used different definitions
of frailty, including the frailty phenotype by [31] and the frailty
index (FI) by [32], and demonstrated that frailty consistently
increased the risk of death in most studies [28, 29].

When comparing the Cox PH model to the frailty models,
it  was  found  that  the  estimates  of  the  standard  error  for  the
fixed effects increased. In some cases, adding a frailty term can
render a result insignificant in the frailty model even though it
was significant in the Cox PH model [33].

A follow-up study may be a good alternative to MDR-TB
surveys. In this case, a cohort of patients may be followed from
different cities. In this paper, the researchers considered only
models with gamma or log-normal frailty. This approach can
be easily extended to other frailty distributions available, such
as inverse Gaussian distributions. However, the approach for
the  positive  stable  distribution  [19],  which  is  expressed  as  a
Laplace transform, would be interesting future work.

CONCLUSION
This study shows that the gamma frailty model provides a

better  fit  to  the  MDR-TB data  than the standard Cox model.
Although further research must be conducted about the models,
an initial investigation suggests that the models will serve as an
enhancement  to  the  field  of  survival  analysis.  The  authors
conclude  that  frailty  in  a  survival  model  is  an  important
consideration  and  is  especially  useful  in  situations  where
clustering  needs  to  be  accounted  for.

LIST OF ABBREVIATIONS

STATA = Statistics and data

MDR-TB = Multidrugresistant tuberculosis

TB = Tuberculosis

FI = Frailty index

LIMITATIONS
The findings  should be interpreted with  caution due to  a

few  limitations.  Some  covariates  that  were  included  in  the
model had missing information. The major problem with this is
that  the  quality  of  the  results  might  decrease  due  to  less
completeness of the data. Furthermore, some patients who were
included in the study were lost to follow-up.
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