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Abstract:

Introduction/Background:  This  research  introduces  the  EO-optimized  Lightweight  Automatic  Modulation
Classification Network (EO-LWAMCNet) model, employing AI and sensor data for forecasting chronic illnesses within
the Internet of Things framework. A transformative tool in remote healthcare monitoring, it exemplifies AI's potential
to  revolutionize  patient  experiences  and  outcomes.This  study  unveils  a  novel  Healthcare  System  integrating  a
Lightweight  Convolutional  Neural  Network  (CNN)  for  swift  disease  prediction  through  Artificial  Intelligence.
Leveraging  the  efficiency  of  lightweight  CNN,  the  model  holds  promise  for  revolutionizing  early  diagnosis  and
enhancing overall patient care. By merging advanced AI techniques, this healthcare model holds the potential for
revolutionizing early diagnosis and improving overall patient care.

Materials and Methods: The Lightweight Convolutional Neural Network (CNN) is implemented to analyze sensor
data in real-time within an Internet of Things (IoT) framework. The methodology also involves the integration of the
EO-LWAMCNet model into a cloud-based IoT ecosystem, demonstrating its potential for reshaping remote healthcare
monitoring and expanding access to high-quality care beyond conventional medical settings.

Results:  Utilizing  the  Chronic  Liver  Disease  (CLD)  and  Brain  Disease  (BD)  datasets,  the  algorithm  achieved
remarkable accuracy rates of 94.8% and 95%, respectively, showcasing the robustness of the model as a reliable
clinical tool.

Discussion: These outcomes affirm the model's reliability as a robust clinical tool, particularly crucial for diseases
benefiting from early detection. The potential transformative impact on healthcare is emphasized through the model's
integration into a cloud-based IoT ecosystem, suggesting a paradigm shift in remote healthcare monitoring beyond
traditional medical confines.

Conclusion: Our proposed model presents a cutting-edge solution with remarkable accuracy in forecasting chronic
illnesses. The potential revolutionization of remote healthcare through the model's integration into a cloud-based IoT
ecosystem underscores its innovative impact on enhancing patient experiences and healthcare outcomes.

Keywords: Chronic disease prediction, EO-LWAMCNet, Internet of Things (IoT), Real-time monitoring, Healthcare
artificial intelligence.
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1. INTRODUCTION
In  the  modern global  health  arena,  chronic  diseases,

notably those affecting the brain and liver, have risen as
primary  challenges  that  nations  worldwide  confront.
World  Health  Organization  (WHO)  underscores  the
growing  prevalence  of  chronic  illnesses,  noting  their
overshadowing of  infections  and other  traditional  health
concerns  [1,  2].  Brain  diseases  include  a  spectrum from
neurodegenerative  conditions  like  Alzheimer's  to  brain
tumors,  and  liver  diseases  range  from  cirrhosis  to
hepatitis.  These  ailments  profoundly  impact  individuals,
their families,  and societies,  contributing significantly to
global  morbidity  and mortality,  with millions affected by
their  severe  consequences  each  year.  The  complexity  of
predicting  chronic  diseases  such  as  those  affecting  the
brain and liver lies in the multitude of influencing factors,
from genetic predispositions to environmental exposures
[3,  4].  Early  detection  is  crucial  for  managing  and
potentially  mitigating  these  diseases,  yet  it  remains
challenging due to the subtle and often misleading nature
of  early  symptoms.  For  example,  initial  signs  of  liver
disease might present as mere fatigue or slight abdominal
discomfort,  easily  confused  with  less  serious  conditions.
Similarly,  early  indicators  of  brain  diseases  might  be
mistakenly attributed to normal aging. The advent of the
Internet  of  Things  (IoT)—a  transformative  technological
innovation—promises to redefine healthcare delivery. IoT
encompasses  a  vast  network  of  interconnected  devices
that  collect,  transmit,  and  analyze  data  without  human
intervention, facilitating a new era of medical diagnostics
and patient care [5, 6].

In  our  research,  the  application  of  Convolutional
Neural  Networks  (CNNs)  plays  a  pivotal  role.  CNNs are
utilized  for  their  advanced  capabilities  in  feature
extraction and classification, identifying complex patterns
in medical data that are beyond the reach of conventional
methods. These networks are specifically engineered to be
lightweight and efficient for healthcare settings, focusing
on  diseases  like  Chronic  Liver  Disease  (CLD)  and  Brain
Disease  (BD).  By  learning  hierarchical  data
representations  automatically,  CNNs  enhance  the
accuracy of disease predictions, aiding early detection and
potentially  improving  outcomes.  Convolutional  Neural
Networks (CNNs) have significantly advanced the field of
medical  diagnostics,  particularly  in  the  prediction  and
management  of  chronic  diseases such as  brain and liver
disorders.  As part  of  our study's technical  contributions,

CNNs  are  primarily  used  for  their  superior  feature
extraction  and  classification  capabilities,  which  are
essential  for  interpreting  complex  medical  data  [7].

CNNs  excel  in  identifying  intricate  patterns  within
large  datasets  that  traditional  analytical  methods  might
overlook.  This  capability  stems from their  deep  learning
architecture,  which  consists  of  multiple  layers  of
processing  units  that  mimic  the  human  brain's  neural
structure. By processing data through these layers, CNNs
can  automatically  learn  and  refine  how  they  recognize
patterns, making them exceptionally effective for medical
imaging and predictive analytics. In the context of chronic
diseases,  where  early  detection  plays  a  crucial  role  in
successful  management,  CNNs  offer  a  transformative
advantage.  They  can  detect  subtle  abnormalities  in
medical images, such as MRI scans or liver function tests,
that  might  indicate  the  early  stages  of  disease  before
clinical symptoms become apparent. This early detection
is  vital  for  conditions  like  liver  cirrhosis  or
neurodegenerative  diseases,  where  timely  intervention
can significantly alter the disease's trajectory and patient
outcomes. Moreover, the study leverages lightweight CNN
models  that  are  optimized  for  healthcare  applications.
These models are designed to be computationally efficient,
ensuring  they  can  be  deployed  in  real-world  healthcare
settings  without  requiring  extensive  hardware,  making
advanced  diagnostics  more  accessible  and  timely.  This
aspect  of  CNN  technology  not  only  enhances  diagnostic
accuracy  but  also  supports  the  healthcare  sector's  shift
towards more proactive and preventive care strategies [8,
9].

This study bridges the gap between the pressing need
for accurate disease prediction and the robust capabilities
of IoT. By enabling real-time monitoring and data analysis,
IoT  devices  provide  healthcare  professionals  with
invaluable  insights  into  patient  health,  supporting  more
informed  diagnoses  and  treatment  strategies.  This
approach  not  only  elevates  the  quality  of  care  but  also
marks  a  shift  from  reactive  to  proactive  healthcare,
underscoring the transformative potential of technology in
addressing chronic  diseases.  The continuous  exploration
of these technologies in global health research highlights
their critical role in addressing the complexities of chronic
disease management and the ongoing need for innovative
solutions.
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2. RELATED WORK
A  segue  into  the  role  of  technology  in  predicting

diseases  leads  us  to  the  vast  and  continually  evolving
realm  of  the  Internet  of  Things  (IoT)  in  healthcare.
According  to  the  research  paper  [10],  the  term  “IoT”  is
attributed to the individual who coined it, representing the
interconnectedness of devices and systems communicating
over the internet. In recent years, healthcare has become
a focal point for IoT applications. A study [11] provided an
exhaustive  review of  how IoT  devices,  such  as  wearable
sensors  and  embedded  systems,  offer  an  unprecedented
opportunity  to  monitor  patients  in  real-time,  enabling
timely  interventions.  These  devices  provide  continuous
streams of data, facilitating the proactive identification of
health anomalies. But while IoT offers the mechanism for
real-time data collection, the crux lies in deciphering this
data  to  derive  meaningful  insights.  This  necessitates
advanced  computational  methodologies,  which  is  where
Convolutional Neural Networks (CNNs) make an entrance.
CNNs are a category of deep learning models, particularly
adept at processing and analyzing visual imagery. A study
[12]  provided  groundbreaking  work  on  ImageNet  and
demonstrated  the  unparalleled  capabilities  of  CNNs  in
image  classification  tasks.  While  traditionally  associated
with image processing, CNNs have recently been adopted
in  healthcare  for  processing  medical  images,  predicting
diseases, and even analyzing data from IoT devices [13].

The  interface  of  IoT  and  CNNs  in  healthcare
technology  is  particularly  promising.  A  study  [14]
illustrated a model where data from wearable IoT devices
was processed using CNNs to predict cardiac arrhythmias.
Their approach showcased how real-time monitoring can
be synergized with  deep learning techniques  to  produce
actionable  insights  for  medical  professionals.  Another
compelling  work  [15]  delved  into  how  a  combination  of
real-time monitoring from IoT devices and the analytical
prowess  of  CNNs  could  predict  the  early  onset  of
neurodegenerative diseases, bridging the often fatal gap
between  early  symptom  manifestation  and  accurate
disease  diagnosis.  However,  while  the  promise  is  vast,
challenges abound. Integrating IoT into healthcare is not
without its hurdles. Data privacy, device interoperability,
and the sheer volume of data generated pose significant
challenges  [16].  Furthermore,  while  CNNs  have  shown
potential,  ensuring their  predictions are interpretable to
healthcare professionals remains a work in progress [17].
Delving  further  into  the  intersection  of  healthcare  and
technology, we encounter numerous studies emphasizing
the  transformative  potential  of  the  Internet  of  Things
(IoT). A study [18] elucidated the profound impact of IoT
on  personalized  healthcare.  Their  research  focused  on
ambient  assisted  living,  wherein  embedded  devices
facilitate  the  continuous  monitoring  of  individuals,
especially  the  elderly,  ensuring  timely  interventions  in
case  of  health  emergencies.  This  concept  broadens  the
spectrum of healthcare, transitioning from hospital-centric
to  patient-centric  models,  ensuring  care  even  outside
traditional  healthcare  establishments.  Additionally,  the
omnipresence of wearable devices and their incorporation

into the health ecosystem can't be ignored. Another study
[19]  explored  the  rise  of  wearable  technology,
emphasizing  the  empowerment  of  patients  through  self-
monitoring.  Their  study  asserted  that  such  devices  have
drastically improved patient engagement, especially in the
realm  of  chronic  diseases,  where  continuous  monitoring
can  lead  to  better  disease  management  and  improved
outcomes.  As  the  debate  around  data  collection  via  IoT
intensifies, the conversation naturally gravitates towards
its effective utilization. Disease prediction, in this context,
is of paramount importance. A work [20] delved into this
very  facet,  exploring  the  predictive  analytics  of  data
collected from various IoT sources. They posited that with
the right algorithms, it's  possible to not only predict the
onset of diseases but also anticipate disease progression
and potential complications, allowing for a comprehensive
care plan. Given the vast influx of data from IoT devices,
the  role  of  advanced  computational  techniques  becomes
pivotal. The prominence of Convolutional Neural Networks
(CNNs)  in  healthcare  analytics  has  gained  traction  over
recent years. In a detailed exploration, another study [21]
showcased the adaptability of CNNs in medical imaging,
detailing their applications in areas like tumor detection,
organ  segmentation,  and  disease  classification.  Their
findings  resonate  with  the  broader  academic  consensus
that  CNNs,  given  their  deep  learning  architecture,  are
uniquely poised to revolutionize medical diagnostics [22].

The primary objective of this paper is to introduce and
evaluate the EO-LWAMCNet model, a cutting-edge AI tool
integrated within an Internet of Things (IoT) framework.
Designed to  process  real-time physiological  sensor  data,
the model aims to accurately predict  chronic conditions,
particularly  Chronic  Liver  Disease  and  Brain  Disease,
enhancing early detection and intervention in healthcare
settings.

3.  THE  INTERNET  OF  THINGS  (IoT)  IN
HEALTHCARE

Over  the  last  ten  years,  the  digital  revolution  has
transformed  numerous  industries,  including  healthcare.
The  Internet  of  Things  (IoT)  is  driving  this  change.  The
Internet  of  Things  (IoT)  offers  never-before-seen  data
collection,  processing,  and exploitation possibilities.  The
word  “IoT”  refers  to  a  wide  range  of  internet-connected
products, from home appliances to office equipment. The
Internet  of  Things  has  had  a  huge  impact  on  the
healthcare  business.  Because  symptoms  are  reactive  in
nature,  traditional  healthcare  models  have  typically
encouraged seeking therapy as soon as they emerge. As a
result  of  the  growth  of  IoT,  there  has  been  a  paradigm
shift in support of a more proactive strategy. A variety of
physiological indications can be continuously monitored by
connected devices with embedded sensors, enabling early
identification  and  even  prognosis  of  future  health
difficulties. Understanding how sensors work is required
for using the Internet of Things in healthcare. These are
sophisticated  equipment  designed  to  interpret
observational  data  and  identify  specific  physiologic  or
environmental  changes  [23,  24].
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For instance, a wearable fitness tracker on one's wrist
can measure heart rate, skin temperature, or even oxygen
levels in real time. Similarly, more specialized sensors, like
implantable glucose monitors,  can continuously measure
blood sugar levels, alerting the patient of any significant
spikes or drops. These sensors, thus, act as the eyes and
ears  of  the  IoT  ecosystem  in  healthcare,  continuously
capturing data that is vital  for understanding a patient's
health status. However, while data collection is an integral
facet, its real-time transmission holds equal, if not greater,
significance,  especially  when  it  comes  to  disease
prediction.  Delayed  or  batched  transmission  of  data  can
lead  to  missed  opportunities  for  early  intervention.
Imagine  a  scenario  where  a  patient  with  a  history  of
cardiac  issues  experiences  abnormal  heart  rhythms.  A
sensor  can  detect  this  anomaly,  but  if  this  data  isn't
transmitted in real-time to a central monitoring system or
to  the  healthcare  provider,  the  window  for  timely
intervention  narrows,  potentially  leading  to  grave
consequences.  On  the  contrary,  real-time  data
transmission  ensures  that  such  anomalies  are  instantly
flagged, allowing for immediate medical attention.

The  importance  of  real-time  transmission  extends
beyond  emergency  scenarios.  Chronic  diseases,  which
often  progress  silently,  can  be  better  managed  with
continuous  monitoring.  Take  diabetes,  for  example.  A
sensor that provides real-time data on blood sugar levels
can offer insights into how different factors, such as food
intake,  exercise,  or  stress,  influence  these  levels.  Over
time, this data can help in tailoring personalized treatment
and  management  plans,  improving  patient  outcomes
significantly. Furthermore, in an age where telemedicine
and  remote  consultations  are  gaining  traction,  the  IoT
plays  a  pivotal  role.  Patients  in  remote  locations  can  be
equipped with IoT devices that transmit their health data
to  specialists  hundreds  of  miles  away,  ensuring  they
receive  expert  advice  without  the  constraints  of
geographical boundaries. Yet, the role of IoT in healthcare
isn’t  without  challenges.  The  sheer  volume  of  data
generated  necessitates  robust  storage  and  processing
solutions. Data security and privacy are paramount. With
personal  health  data  being  continuously  transmitted,
ensuring  its  protection  from  potential  breaches  is
essential.  Additionally,  the  standardization  of  devices,
ensuring interoperability and the creation of frameworks
that can effectively analyze and interpret vast streams of
data are areas that need continuous innovation. Moreover,
as  the  global  population  ages,  the  strain  on  healthcare
systems  worldwide  intensifies.  IoT  offers  a  glimmer  of
hope  in  this  scenario.  Elderly  patients,  especially  those
with  chronic  conditions,  can  benefit  immensely  from
home-based IoT systems. Such systems can monitor their
health, ensure medication adherence, and even detect falls
or other emergencies, transmitting alerts to caregivers or
medical professionals [25, 26].

The sensor landscape in healthcare IoT is varied and
caters to an array of physiological parameters is listed in
Table  1.  This  tabulation  provides  an  overview  of  a  few
prominent  sensors  and  their  key  specifications.  Starting

with Heart Rate Sensor's primary function is to measure
the number of heartbeats per minute. Given that a typical
resting heart rate for adults ranges from 60 to 100 beats
per  minute,  this  sensor  has  a  sensing  range  of  30-240
BPM, ensuring it can detect both abnormally low and high
heart  rates.  Its  accuracy  is  within  ±2  BPM,  and  it
transmits  data  at  a  rate  of  1  Hz,  meaning  it  sends  data
once  every  second,  which  is  crucial  for  real-time
monitoring. Furthermore, it operates efficiently, requiring
only a 3.3V power source and drawing a current of 1mA.
The  Glucose  Monitor,  vital  for  diabetics,  keeps  tabs  on
blood  sugar  levels.  The  sensing  range  of  40-400  mg/dL
ensures it  captures a  wide range of  glucose levels,  from
hypoglycemia to hyperglycemia. With an accuracy of ±10
mg/dL  and  a  data  transmission  rate  of  0.5  Hz  (or  once
every two seconds), it provides a fairly real-time view of a
patient's glucose levels.
Table 1. Sensor specification.

Sensor Type Accuracy
Data

Transmission
Rate

Power
Requirement

Heart Rate Sensor ±2 BPM 1 Hz 3.3V, 1mA
Glucose Monitor ±10 mg/dL 0.5 Hz 3.7V, 5mA

Temperature
Sensor ±0.1°C 1 Hz 3V, 10uA

Oxygen Saturation ±2% 1 Hz 3.5V, 2mA
Motion Sensor N/A 10 Hz 3V, 6uA

The  power  specifications  ensure  it  can  function
efficiently  without  draining  the  battery  quickly.  The
Temperature  Sensor  offers  insights  into  the  body's  core
temperature,  a  key  metric  in  detecting  fever,
inflammation, or hypothermia. Operating within a range of
32-42°C, it can detect subtle variations with an accuracy
of  ±0.1°C,  transmitting  this  data  every  second.  The  low
power  requirement  ensures  longevity  and  sustained
operation. Oxygen Saturation Sensors play a pivotal role,
especially in conditions like COPD, and asthma, or even in
monitoring the health of COVID-19 patients. Given that an
oxygen  saturation  level  below  90%  is  concerning,  this
sensor's  range  from  70-100%  ensures  it  captures  any
significant  drops.  With  a  2%  margin  of  error  and  a
transmission rate of 1 Hz, it provides a near real-time view
of  oxygen  levels  in  the  bloodstream.  Lastly,  the  Motion
Sensor,  equipped  to  detect  physical  activity  and  falls,  is
particularly  crucial  for  elderly  patients.  Its  multi-axis
detection  allows  for  sensing  movement  in  various
directions. While it does not have a traditional 'accuracy'
metric like the others, its high transmission rate of 10 Hz
means  it  can  rapidly  detect  and  report  any  sudden
movements  or  falls,  ensuring  timely  interventions  if
needed.

4. METHOD
The  EO-LWAMCNet,  standing  for  “EO-optimized

Lightweight  Automatic  Modulation  Classification
Network,”  is  an  avant-garde  model  conceived  to
revolutionize  the  predictive  capabilities  in  healthcare,
specifically  for  chronic  diseases.  This  proposed  model



A Healthcare System Employing Lightweight CNN 5

leverages  optimization  techniques  combined  with  the
lightweight design of  the network,  ensuring efficient yet
accurate disease predictions as described in Table 2.
Table 2. Proposed model description.

Component Description Functionality

Input Layer Accepts sensor data from
IoT devices Data ingestion

EO Optimization
Layer

Uses Evolutionary
Optimization (EO)

techniques to fine-tune
network weights

Enhances network's
predictive capability

Convolutional
Layers

Multiple layers designed
for feature extraction

Extracts relevant patterns
from the data

Pooling Layers Reduces dimensionality of
the data

Compresses data and
retains features

Fully Connected
Layer

Dense layer where
neurons are

interconnected
Classification and

prediction

Output Layer Produces the final
prediction result

Disease prediction
(Normal/Abnormal)

At its very core, the EO-LWAMCNet model is designed
to handle vast influxes of data from IoT sensors, process
this data to extract meaningful patterns, and subsequently
make  predictions  about  potential  chronic  diseases,  as
shown in Fig. (1). The architecture is particularly poised to
handle  the challenges presented by the varied nature of
chronic disease symptoms, ensuring accurate predictions
even when the symptoms might be subtle or ambiguous.
Starting  with  the  Input  Layer,  this  is  where  the  entire
process begins. Data from IoT devices, whether it's a heart
rate,  glucose  level,  or  temperature,  is  ingested  into  the
network  through  this  layer.  Given  the  diverse  range  of
sensors  in  the  healthcare  IoT  landscape,  this  layer  is
crucially  designed  to  handle  heterogeneous  data  types,
ensuring seamless integration. Post the data ingestion, the

model  utilizes  the  EO  Optimization  Layer.  One  of  the
primary challenges in neural networks is determining the
optimal  weights  that  would  enhance  the  network's
predictive  capability.  Traditional  methods  often  rely  on
backpropagation,  which might  get  stuck in local  optima.
The  EO,  or  Evolutionary  Optimization  technique,  is
inspired by the principles of natural selection. By iterating
over  generations,  it  fine-tunes  the  network  weights,
ensuring  they  are  optimized  for  the  best  possible
prediction. This layer acts as the secret sauce of the EO-
LWAMCNet  model,  giving  it  an  edge  over  traditional
CNNs.  The  architecture  of  CNN is  shown in  Fig.  (2)  for
more details and understanding of how CNN works.

Fig. (1). Proposed model methodology.

Fig. (2). CNN architecture.
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Once  the  data  is  optimized,  it  traverses  through
multiple  Convolutional  Layers.  These  layers  are
quintessential  for  feature  extraction.  Essentially,  they
move  over  the  data  using  filters,  detecting  patterns  or
features that are vital for prediction. For instance, if the
data  suggests  a  gradual  increase  in  glucose  levels  over
time, the convolutional layer would recognize this pattern
as indicative of a potential diabetic condition. However, as
the  data  progresses,  its  volume  can  become  a
computational challenge. This is where the Pooling Layers
step in. By reducing the dimensionality of the data, these
layers  ensure  that  the  computational  efficiency  of  the
network is maintained. While they compress the data, they
do so while retaining the most critical features extracted
by the convolutional layers. The Fully Connected Layer is
the penultimate stage of the process. It is a dense layer,
meaning every neuron in this layer is connected to every
neuron in the preceding and following layers. It interprets
the  features  extracted  and  patterns  recognized  by  the
preceding layers, processing them for the final prediction.
Finally, the Output Layer produces the crux of the model's
purpose:  the  prediction  result.  Given  our  context,  it
classifies  the  data  into  potential  categories,  such  as
“Normal”  or  “Abnormal,”  signaling  the  presence  or
absence  of  a  chronic  disease.

In this study, disease prediction is approached through
the integration of advanced technological methodologies,
specifically  the  use  of  Convolutional  Neural  Networks
(CNNs)  and  the  Internet  of  Things  (IoT).  The  study
demonstrates  how  CNNs  can  effectively  identify  and
classify complex patterns within medical data, which are
crucial for the early detection of chronic diseases such as
those affecting the brain and liver.  By employing a deep
learning  architecture,  CNNs  learn  to  decipher  subtle
nuances in  medical  imagery that  might  elude traditional
diagnostic  techniques.  Concurrently,  the  IoT  framework
enhances this predictive capability by enabling continuous
real-time data collection and analysis. This dual approach
allows  for  a  comprehensive  monitoring  system  that  can
predict disease onset earlier than conventional methods,
significantly  improving  the  potential  for  timely  and
effective  interventions.  The  synergy  between  CNNs  and
IoT not only underscores the study's innovative approach
to disease prediction but also sets a new benchmark in the
proactive management of chronic conditions.

This  model  is  designed  to  enhance  the  predictive
capabilities  in  healthcare,  particularly  for  chronic
diseases,  by  utilizing  advanced  AI  techniques.  Here's  a
detailed  breakdown  of  the  model's  components  and
functions:

4.1. Input Layer
Receives  sensor  data  from  IoT  devices.  This  is  the

initial  point  of  data  collection,  where  diverse  types  of
health-related  data  are  ingested  into  the  model.

4.2. EO Optimization Layer
Utilizes Evolutionary Optimization (EO) techniques to

fine-tune network weights. This layer aims to enhance the

model's predictive capabilities by optimizing the network
parameters  based  on  principles  similar  to  natural
selection, ensuring that the model adapts and evolves to
provide the most accurate predictions.

4.3. Convolutional Layers
Composed  of  multiple  layers  designed  for  feature

extraction.  These  layers  process  the  ingested  data  to
identify  relevant  patterns  and  features  essential  for
accurate  disease  prediction.

4.4. Pooling Layers
Serve  to  reduce  the  dimensionality  of  the  data.  By

compressing the data while retaining important features,
these  layers  help  maintain  computational  efficiency  and
ensure that  the  model  can handle  large volumes of  data
without a loss in performance.

4.5. Fully Connected Layer
A dense layer where all neurons are interconnected. It

plays  a  crucial  role  in  classification  and  prediction  by
processing  the  features  and  patterns  extracted  by  the
convolutional  layers.

4.6. Output Layer
Outputs  the  final  prediction  result,  categorizing  the

data  as  either  “Normal”  or  “Abnormal”  to  indicate  the
presence or absence of a chronic disease.

4.7. Model Methodology and Application
• The EO-LWAMCNet model is adept at handling large

influxes  of  data  from  IoT  sensors  and  is  specifically
tailored  to  meet  the  challenges  of  chronic  disease
prediction.  Its  architecture  is  optimized  to  process  data
efficiently, extract meaningful patterns, and make reliable
predictions even in cases where disease symptoms may be
subtle or ambiguous.

• The use of Evolutionary Optimization is particularly
significant  as  it  helps  the  model  avoid  the  pitfalls  of
traditional  neural  network  training  methods,  such  as
getting stuck in local optima. This ensures that the model
remains robust and adaptive to new data patterns, which
is crucial in the dynamic field of healthcare.

• The model  is  poised to make significant  impacts in
remote  healthcare  monitoring  by  providing  accurate
predictions  in  real-time,  making  it  highly  suitable  for
applications where timely and reliable disease detection is
crucial.

This  sophisticated  model  exemplifies  how  AI  can
revolutionize healthcare by enhancing diagnostic accuracy
and  efficiency,  ultimately  aiming  to  improve  patient
outcomes  by  leveraging  cutting-edge  technologies  in  a
practical,  impactful  manner.

In  summary,  the  EO-LWAMCNet  model  is  a
culmination of advanced optimization techniques and the
foundational principles of convolutional neural networks.
With its ability to ingest diverse data, recognize intricate
patterns,  and  make  accurate  predictions,  it  stands  as  a
testament  to  the  potential  of  AI  in  revolutionizing
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healthcare predictions. This model not only addresses the
challenges  presented  by  chronic  diseases  but  also  uses
computational efficiency, making it suitable for real-time
applications,  especially  when  paired  with  the  vast  data
streams from IoT devices in healthcare.

5. DATASET: CHRONIC LIVER DISEASE (CLD) AND
BRAIN DISEASE (BD) DATASETS

In  our  work,  we  utilized  the  Chronic  Liver  Disease
(CLD) dataset and the Brain Disease (BD) dataset. These
datasets were chosen for their relevance to our research
objectives and their availability of comprehensive data for
analysis. As for the environment, we employed Jupiter and
Google Colab as a platform for programming, and python
programming used and scikit  learn,  Opencv library used
for data processing and analysis, ensuring robustness and
efficiency in our methodology.

In  Table  3,  Chronic  Liver  Disease  (CLD)  dataset
provides  a  holistic  view  of  parameters  that  are  typically
indicative of liver health. For instance:
Table 3. CLD trail dataset.

Patient ID Bilirubin Level
(mg/dL)

Albumin Level
(g/dL)

Prothrombin Time
(seconds)

1001 1.5 3.5 14
1002 0.8 4.2 13
1003 2.3 2.9 16

5.1. Bilirubin Level
Elevated levels can indicate liver dysfunction.

5.2. Albumin Level
Lower  levels  can  suggest  liver  disease  or  other

conditions.

5.3. Prothrombin Time
A  prolonged  prothrombin  time  can  be  indicative  of

liver  damage.
•  The  tabulated  data  showcases  three  different

patients with varied symptoms. Patient 1001, for instance,
with elevated bilirubin, reduced albumin, and a prolonged
prothrombin time, has been diagnosed with Cirrhosis.

On the other hand, in Table 4, the Brain Disease (BD)
dataset focuses on parameters that provide insights into
neurological health. These parameters include:
Table 4. BD trail dataset.

Patient ID MRI Result Cognitive
Test Score

Neurotransmitter
Levels (ng/mL)

2001 Abnormal 25 65
2002 Normal 50 80

2003 Mildly
Abnormal 30 70

5.4. MRI Result
Indicates abnormalities in the brain structure.

5.5. Cognitive Test Score
A lower score can suggest  cognitive decline or  other

neurological issues.

5.6. Neurotransmitter Levels
Imbalanced  levels  can  be  indicative  of  various

neurological  disorders.
• From our BD dataset, Patient 2001's abnormal MRI

results,  coupled  with  a  lower  cognitive  test  score  and
imbalanced neurotransmitter levels, led to a diagnosis of
Alzheimer's disease.

Both  datasets  play  a  pivotal  role  in  training  the  EO-
LWAMCNet model. They provide the model with a broad
spectrum  of  patient  profiles,  symptoms,  and  eventual
diagnoses.  This  diversity  ensures that  the model  is  well-
equipped to recognize patterns and make predictions on
new,  unseen  data.  The  varied  cases,  from  normal  to
different  stages  of  diseases,  ensure  that  the  model  can
differentiate and classify potential health conditions with a
high degree of accuracy. By feeding such comprehensive
datasets  into  the  model,  we  leverage  real-world  patient
data  to  build  a  predictive  tool  that  can  potentially
revolutionize the early detection of chronic liver and brain
diseases.

6. RESULTS AND DISCUSSION
Training  a  machine  learning  model  is  analogous  to

teaching a student. The model, like the student, is exposed
to a variety of problems and their solutions (in the form of
training  data).  Through  this  exposure,  it  learns  to
generalize from the patterns it sees, aiming to apply this
knowledge effectively to unseen problems in the future.

The core of the training stage for the EO-LWAMCNet
model involves a backpropagation algorithm coupled with
Evolutionary  Optimization  (EO)  for  weight  updates.  The
backpropagation algorithm uses the principle of gradient
descent.  Given  an  input,  the  model  makes  a  prediction,
and the error between this prediction and the true output
is calculated using a loss function, L. Mathematically, for a
simple mean squared error loss function:

L =N1 ∑ i= 1N (yi −y^ i)^2
Using  this  error,  the  gradient  descent  algorithm

updates  the  model's  weights  in  the  direction  that
minimizes  this  error.  The  model's  weights  are  adjusted
iteratively using the formula:

wnew = wold −α∇L
While backpropagation provides a direction for weight

updates, the EO further refines this process, ensuring that
the  model  doesn't  get  stuck  in  local  optima  and  finds  a
more global optimal solution. For the data, the raw dataset
is  divided  into  training  and  validation  sets.  Typically,  a
common split  might  be 80% of  the data for  training and
20% for validation. The training data is used to teach the
model,  while  the  validation  data  is  used  to  tune
hyperparameters  and  prevent  overfitting.  Overfitting
occurs when the model performs exceptionally well on the
training data but poorly on unseen data, implying it hasn't
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generalized  well  but  has  rather  memorized  the  training
data.  In addition to the data split,  techniques such as k-
fold  cross-validation  can  be  applied.  Here,  the  training
data  is  divided  into  k  subsets.  The  model  is  trained  k
times,  each  time  using  k-1  subsets  for  training  and  the
remaining subset for validation. This process enhances the
robustness  of  the  model,  ensuring  that  it  is  exposed  to
diverse  training  and  validation  combinations.  Post-
training,  the  model  undergoes  the  testing  phase.  Here's
where the cloud server's sensor data plays a pivotal role.
The  cloud  server  aggregates  the  real-time  data
transmitted  from  various  IoT  sensors  embedded  in
patients.  This  aggregated  data,  which  has  not  been
exposed  to  the  model  during  its  training  phase,  is  input
into  the  now-trained  EO-LWAMCNet  model.  The  model
evaluates this data, classifying it into potential categories
like  “Normal”  or  “Abnormal”.  The  beauty  of  leveraging
cloud servers is the vast computational power they offer,
making the evaluation process swift. Post-evaluation, the
results are compared to the actual outcomes (if known) to
calculate  the  model's  performance  metrics,  such  as
accuracy, precision, recall, and F1-score. In essence, the
training  and testing  stages  of  the  EO-LWAMCNet  model
involve a harmonious blend of mathematical optimization
techniques,  rigorous  validation  strategies,  and  the
computational prowess of cloud servers. Together, these
elements  contribute  to  the  creation  of  a  predictive  tool
that is not only accurate but also scalable and efficient in
real-world scenarios.

The classification process, at its essence, is akin to a
well-conducted  symphony,  wherein  various  instruments
(or steps) come together harmoniously to produce a final,
discernible  output.  In  the  case  of  our  EO-LWAMCNet
model, the ultimate goal is to categorize incoming sensor
data into either “abnormal” or “normal” health conditions.

As sensor data streams into the system, the first step is
its  ingestion  is  displayed  in  Table  5.  This  involves
collecting, organizing, and feeding the data into the EO-
LWAMCNet  model.  Given  the  real-time  nature  of
healthcare IoT, data ingestion often happens in near real-
time. Even before delving into classification, it is crucial to
understand  the  nature  and  significance  of  the  data  at
hand. Feature extraction involves identifying and isolating
the most pertinent pieces of information or features from
the  raw  sensor  data  that  would  be  most  indicative  of  a
patient's health condition. Once the features are extracted
and processed, they're fed into the trained EO-LWAMCNet
model.  Drawing  upon  its  training,  the  model  assesses
these  features  and  renders  a  prediction.  Leveraging  its
intricate architecture and the patterns it has learned from
historical  data,  the  model  classifies  the  data  into  either
“abnormal”  or  “normal.”  Classification  often  hinges  on
threshold values. For instance, while a continuous output
might suggest a 75% likelihood of an abnormal condition,
a  threshold  (e.g.,  50%)  determines  the  final  binary
classification. If the likelihood exceeds this threshold, the
prediction  is  marked  as  “abnormal.”  Otherwise,  it's
“normal.”  Post-prediction,  the  results  are  tabulated,  as

seen  above.  Each  patient's  details,  the  relevant  sensor
data, and the model's prediction are compiled, providing a
comprehensive view of their health status.
Table 5. Classification prediction.

Patient ID Sensor Data
(Feature1)

Sensor Data
(Feature2)

Predicted
Classification

A123 1.6 3.5 Abnormal
B456 0.9 4.3 Normal
C789 2.1 3.0 Abnormal

The relevance and importance of swift classification in
healthcare are paramount. Chronic conditions, if identified
early, can often be managed or even reversed with timely
interventions.  Delays  can  exacerbate  health  issues,
leading  to  complications,  reduced  quality  of  life,  and
increased  healthcare  costs.

Moreover,  in  critical  scenarios,  every  second counts.
Consider  a  patient  with  a  cardiac  issue;  real-time  data
might  reveal  irregular  heart  rhythms,  necessitating
immediate medical attention. A swift classification, in this
case, can quite literally be the difference between life and
death. In conclusion, the classification process in the EO-
LWAMCNet model is a meticulously designed journey from
raw, real-time data to actionable health insights. By swiftly
and  accurately  categorizing  data,  this  process  plays  a
pivotal  role  in  enhancing  patient  outcomes,  optimizing
healthcare  interventions,  and  potentially  saving  lives.

Performance evaluation in machine learning serves as
a  comprehensive  assessment  of  how  well  a  model
performs its intended task. It involves various metrics that
go  beyond  accuracy,  offering  a  more  nuanced
understanding of  a  model's  strengths  and limitations.  In
the  case  of  the  EO-LWAMCNet  model,  evaluating  its
performance on both the Chronic Liver Disease (CLD) and
Brain Disease (BD) datasets involves an array of metrics,
each shedding light on different aspects of its predictive
capability.

As illustrated in Figs. (3 and 4), accuracy is defined as
the fraction of correct forecasts among all predictions. The
model successfully categorizes 94.8% of the samples in the
CLD  dataset,  obtaining  a  94.8%  accuracy  grade.  The
accuracy  of  95%  for  the  BD  dataset  demonstrates  the
model's  capacity  to  recognize  neurological  disorders.
Precision is the proportion of accurately predicted positive
outcomes  that  include  “abnormal”  cases  that  were
detected correctly (correct positive forecasts). Because of
its  precision  of  95.2%,  when  CLD  labels  something  as
“abnormal,”  it  often  does  so  with  95.2%  accuracy.  The
model's  94.7%  accuracy  in  recognising  “abnormal”
neurological illnesses in the BD dataset demonstrates its
effectiveness. The percentage of correct positive forecasts
among  all  instances  of  true  positivity  is  referred  to  as
recall,  also  known  as  sensitivity.  The  model  correctly
detected 94.0% of the real  “abnormal” cases in the CLD
dataset  or  recall.  According  to  the  recall  rate  for  BD,
95.3%  of  the  neurological  disorders  identified  by  the
model  were  “abnormal.”
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Fig. (3). Performance metrics.

Fig. (4). Miss rate values.
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Fig. (5). Performance comparison- CLD.

The harmonic mean of recall and precision is used to
generate the F1 score. It provides an accurate evaluation
of  a  model's  performance.  CLD  receives  an  F1  score  of
94.6%,  whereas  BD  receives  a  score  of  95.0%.  These
findings demonstrate that the model successfully strikes a
compromise between precision and recall. The percentage
of  “abnormal” cases that  the model  incorrectly  labels  as
“normal” is known as the miss rate or false negative rate.
The  model  misses  6.0% of  instances  of  “abnormal”  liver
function, according to the CLD miss rate. The 4.7% miss
rate in BD demonstrates the model's ability to reduce false
negatives in neurological predictions. These performance
metrics  give  a  thorough  grasp  of  the  EO-LWAMCNet
model's capabilities. They stand for the model's capacity to
identify  “abnormal”  instances,  identify  instances  of
“abnormality”  that  actually  occur  (recall),  and  balance
precision-recall  (F1  score).

Additionally,  the  miss  rate  highlights  the  model's
potential for minimizing false negatives, a critical aspect
in healthcare where missing a disease diagnosis can have
significant  consequences.  Overall,  these  metrics
collectively  demonstrate  the  model's  robustness  and
reliability  in  the  context  of  healthcare  predictions.

To  contextualize  the  prowess  of  the  EO-LWAMCNet
model,  it's  vital  to  benchmark  its  performance  against
existing  models.  This  comparison  not  only  places  the
model's  achievements  in  perspective  but  also  provides
insights into where it stands in the broader landscape of
healthcare predictive modeling.

Figs. (4  and 5) provide a performance comparison of
the  EO-LWAMCNet  with  two  other  commonly  used
machine learning models in the realm of healthcare: Deep
Neural  Network  (DNN)  and  Support  Vector  Machine
(SVM).

In  Fig.  (5),  for  the  CLD  dataset:  EO-LWAMCNet
retains its leading position with an accuracy of 94.8%. Its
precision,  recall,  and  F1-Score  also  reflect  its  well-
rounded  performance  in  predicting  liver  diseases.  The
DNN (Model A), designed with multiple layers, achieves an
accuracy  of  91.5%.  Even  though  deep  learning  models
have shown promise in  various domains,  in  this  context,
they lag behind the EO-LWAMCNet, but their performance
still  remains  commendable.  The  SVM  (Model  B),  a
classical  machine  learning  approach  designed  to  find
hyperplanes  that  best  separate  the  classes,  achieves  an
accuracy  of  92.8%.  Its  precision,  recall,  and  F1-Score
suggest  a  slightly  better  performance  than  the  DNN,
showcasing SVM's potential effectiveness in handling the
dataset's  intricacies.  In  Fig.  (6)  for  the  BD  dataset:  EO-
LWAMCNet  exhibits  an  accuracy  of  95%,  indicating  its
consistent  performance  across  varied  datasets.  DNN
(Model  A)  achieves  an  accuracy  of  92.6%.  The
architecture's  deep  layers  allow  it  to  capture  the
complexities of brain-related data to some extent but still
fall  short  compared  to  EO-LWAMCNet.  SVM  (Model  B)
shows  an  accuracy  of  93.9%.  In  the  context  of  the  BD
dataset, SVM demonstrates its versatility in dealing with
different kinds of data, making it a noteworthy contender.
While the EO-LWAMCNet emerges as a frontrunner, the
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Fig. (6). Performance comparison- BD.

performances of DNN and SVM highlight the landscape's
richness. Each method, with its unique approach, brings
something  valuable  to  the  figure.  The  choice  often  boils
down to the nature of the data, the problem specifics, and
the  computational  resources  available.  Yet,  through  this
comparison,  it's  evident  that  innovations  like  EO-
LWAMCNet push the boundaries, setting new benchmarks
for predictive healthcare modeling.

The  EO-LWAMCNet  model's  stellar  performance,  as
showcased by the results, signifies a marked advancement
in  the  field  of  predictive  healthcare.  With  accuracies
hovering  around  the  mid-90s  for  both  Chronic  Liver
Disease (CLD) and Brain Disease (BD) datasets, the model
emerges  not  merely  as  a  theoretical  novelty  but  as  a
practical  tool  with  transformative  potential.  Firstly,  the
results  underscore  the  model's  reliability.  In  healthcare,
where stakes are immensely high, the margin for error is
incredibly thin. An accuracy of 94.8% for CLD and 95% for
BD means that in almost 95 out of 100 cases, the model
can discern with precision whether a patient's condition is
normal or indicative of a chronic ailment. This high level of
certainty is paramount when dealing with real-life clinical
scenarios  where  misdiagnoses  can  lead  to  grave
consequences. Furthermore, while accuracy is imperative,
other  metrics,  including  precision,  recall,  and  F1-score,
shed  light  on  the  model's  holistic  performance.  The
balance between precision (the model's correctness when
it  predicts  'abnormal')  and  recall  (its  effectiveness  in
capturing all  'abnormal'  cases) speaks volumes about its

utility.  High  precision  ensures  doctors  aren't  inundated
with  false  alarms,  while  a  robust  recall  ensures  that
genuine  cases  don't  go  unnoticed.  For  doctors  and
healthcare  providers,  these  results  are  game-changing.

The  foremost  implication  is  the  potential  for  early
disease detection. Chronic conditions, whether related to
the  liver  or  the  brain,  often  have  an  insidious  onset,
manifesting  clinically  only  when  they're  considerably
advanced.  With  a  tool  like  EO-LWAMCNet,  doctors  can
potentially  identify  and  intervene  early,  drastically
improving  patient  prognosis.  For  conditions  where  early
therapeutic interventions can halt or even reverse disease
progression, this could make the difference between full
recovery  and  chronic  morbidity  or  even  mortality.  In
addition,  the  model's  performance  can  be  a  significant
asset  in  resource-constrained  settings.  In  regions  where
specialist  doctors  are scarce,  such a reliable AI  tool  can
act  as  a  preliminary  screener,  identifying  high-risk
patients  who  need  immediate  attention.  It  can  help
optimize the allocation of medical resources, ensuring that
those  in  dire  need  receive  prompt  care.  Moreover,  in
today's  digital  age,  where  telemedicine  is  becoming
increasingly  prevalent,  a  model  like  EO-LWAMCNet  can
seamlessly  integrate  into  remote  healthcare  platforms.
Patients in distant locations, without immediate access to
healthcare facilities, can benefit from real-time feedback
on  their  health  status.  Should  the  model  detect  an
anomaly, they could be advised to seek in-person medical
evaluation,  bridging  the  gap  between  remote  living  and
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quality  healthcare.  However,  while  the  results  are
promising, they also come with an implied responsibility.
The  very  strength  of  the  model—its  ability  to  make
accurate  predictions—also  makes  it  crucial  for  it  to  be
used judiciously. False positives, though minimal, can lead
to unnecessary medical interventions, and the rarer false
negatives could lead to missed diagnoses. As with all tools,
it's vital for healthcare providers to use the model as an
adjunct to their clinical acumen and not a replacement.

CONCLUSION
The introduction of the EO-LWAMCNet model marks a

significant  stride  in  the  realm  of  predictive  healthcare.
With stellar performance metrics, achieving accuracies of
94.8%  for  the  Chronic  Liver  Disease  (CLD)  dataset  and
95% for the Brain Disease (BD) dataset, the model stands
as  a  testament  to  the  harmonious  melding  of  advanced
computational  techniques  and  medical  science.  Beyond
mere numbers, these results signify a reliable tool capable
of  aiding  early  disease  detection,  an  imperative  in
managing  chronic  conditions  where  timely  interventions
can  drastically  alter  outcomes.  Furthermore,  its  high
precision  and  recall  values  highlight  its  utility  in  real-
world  clinical  scenarios,  ensuring  minimal  false  alarms
while capturing genuine cases effectively. For healthcare
professionals,  especially  in  resource-constrained
environments,  the  model  emerges  as  a  beacon  of  hope,
providing  a  preliminary  screening  tool  that  can  identify
high-risk  patients.  As  we  navigate  the  rapidly  evolving
landscape of digital health, tools like EO-LWAMCNet serve
as  harbingers  of  a  future  where  data-driven  insights
augment clinical expertise, collectively enhancing patient
care. While the journey of integrating AI into healthcare is
ongoing,  the  EO-LWAMCNet's  results  underscore  the
immense  potential  this  synergy  holds.
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