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Abstract:
Purpose:  The  purpose  of  region-based  medical  image  compression  is  to  optimize  the  compression  process  by
focusing on specific regions of interest within medical images. Unlike traditional compression methods that treat the
entire image uniformly, region-based compression techniques identify and prioritize certain areas or regions within
the image that are deemed more diagnostically significant or relevant. By allocating more resources to compressing
these critical regions while reducing compression in less important areas, region-based compression methods aim to
achieve higher compression efficiency while preserving diagnostic quality. This approach is particularly valuable in
medical imaging, where accurate representation of anatomical structures or pathological findings is paramount for
clinical  diagnosis  and  decision-making.  Region-based  compression  can  help  reduce  storage  requirements,
transmission  bandwidth,  and  processing  time  without  compromising  the  diagnostic  integrity  of  medical  images,
thereby facilitating more efficient healthcare delivery and telemedicine applications.

Methods: In this study, we utilized distortion-limiting compression techniques to optimize the compression process
for specific regions within medical images. We employed lossless scalable RBC (Region-Based Compression) using
Discrete Wavelet Transform (DWT) for Digital Imaging and Communication in Medicine (DICOM) images. The initial
step involved medical image pre-processing, followed by segmentation to separate the image into regions of interest
(ROI)  and  non-ROI.  Compression  techniques  were  then  applied  to  reduce  network  bandwidth  and  storage
requirements. Fractal lossy compression was employed for the non-ROI portion, while context-tree weighting lossless
compression was proposed for the ROI portion, effectively compressing the image while rejecting noisy background
elements. During decompression, the original medical image can be reconstructed using the reverse process. This
approach optimizes storage and transmission efficiency while  preserving diagnostic  integrity  in  medical  imaging
applications.

Results: The experiment involved testing various medical images, and the proposed method outperformed previous
techniques in terms of results. According to the findings, the improvement in Peak Signal-to-Noise Ratio (PSNR) over
current techniques reached up to 24.23 dB compared to the Joint Photographic Experts Group (JPEG). Additionally, it
achieved up to 12.22 dB improvement compared to other transform approaches. These significant enhancements
prompted the development of a web and mobile platform for compressing and sending medical images, particularly
microscopic ones, in real time.

Conclusion: This research focuses on employing wavelet transform techniques to compress the Region of Interest
(ROI) within medical images. This ROI-based compression approach is particularly valuable as it retains essential
diagnostic  information  while  reducing  the  overall  file  size.  Such  a  technique  holds  significant  promise  for
telemedicine  systems,  especially  in  rural  regions  where  network  resources  may  be  limited  or  constrained.  By
selectively compressing the most diagnostically relevant areas of medical images, this approach ensures that critical
information  is  preserved  while  optimizing  data  transmission  and  storage  efficiency.  This  can  ultimately  enhance
access to medical imaging services and facilitate remote diagnosis and treatment in underserved areas with limited
network infrastructure.
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1. INTRODUCTION
In  recent  years,  medical  imaging  has  become  a  vital

tool  in  clinical  practice,  enabling  the  observation  of
internal  organs  for  diagnostic  and  treatment  purposes.
This  technique  significantly  contributes  to  reducing
mortality rates, decreasing hospital admissions, extending
life expectancy, shortening hospital stays, and minimizing
the  need  for  exploratory  surgeries.  Various  types  of
medical  imaging,  such  as  Magnetic  Resonance  Imaging
(MRI),  X-rays,  Ultrasound  imaging,  and  Computed
Tomography (CT) scanning, are employed to examine the
human  body.  The  rapid  development  and  increasing
demand  for  these  imaging  modalities  have  led  to  a
substantial rise in the production, transfer, and sharing of
medical images [1, 2].

Telemedicine has emerged as a pivotal component of
modern  healthcare,  offering  a  means  to  overcome
geographical barriers, improve access to medical services,
and facilitate timely medical interventions. Central to the
efficacy  of  telemedicine,  particularly  in  diagnostics  and
treatment  planning,  is  the  reliance  on  medical  imaging
technologies. Magnetic Resonance Imaging (MRI), with its
capability  to  produce  high-resolution  images  critical  for
accurate medical assessments, plays a significant role in
this  domain.  However,  this  advancement  comes  with  its
own  set  of  challenges,  primarily  associated  with  the
management  of  MRI  data,  which  is  often  stored  in
different  formats.  These  files,  characterized  by  their
substantial  size,  pose  significant  challenges  in  terms  of
storage  and  transmission,  especially  in  telemedicine
scenarios where bandwidth and storage resources may be
limited. The need for efficient and effective telemedicine
services is not just a matter of convenience but a crucial
element in ensuring equal access to healthcare, especially
in  remote  or  resource-limited  settings.  Efficient  trans-
mission of large MRI files while maintaining the integrity
and  quality  of  the  images  is  vital  for  accurate  diagnosis
and treatment planning. Current approaches to managing
these  large  files,  such  as  standard  compression
techniques,  often  lead  to  a  trade-off  between  file  size
reduction and image quality. This compromise can impede
the  clinical  utility  of  the  transmitted  images,  potentially
affecting  patient  outcomes.  Therefore,  developing
advanced  methods  to  handle  large  medical  image  files
without  compromising  their  quality  is  essential  for
improving  telemedicine  services  and  ensuring  better
healthcare  delivery  [3,  4].

1.1. Problem Statement and Motivation
Medical  images  are  stored  in  various  formats  by

different imaging modalities, making retrieval,  processing,
and  transmission  challenging.  The  large  size  of  medical
images leads to issues with network bandwidth and storage
capacity.  Unlike  simple  text  or  document  files,  medical
images contain extensive details and information, requiring
more  bandwidth  to  transmit  over  different  types  of
networks.  Therefore,  it  is  crucial  to  reduce  the  volume  of
these images before storage or transmission, high- lighting
the  need  for  compression.  Compression  is  defined  as
minimizing the size or volume of data needed to describe a
given  amount  of  information.  Efficient  compres-  sion
techniques  are  thus  essential  in  telemedicine  and  its
applications, ensuring that medical images can be effectively
stored and transmitted without compromising quality.

The  motivation  behind  this  research  arises  from  the
increasing  demand for  efficient  and effective  telemedicine
services,  especially  within the domain of  medical  imaging.
Magnetic  Resonance  Imaging  (MRI)  is  integral  to
diagnostics  and  treatment  planning,  providing  high-reso-
lution  images  essential  for  precise  medical  evaluations.
However, the significant size of MRI files, often stored in the
different formats, presents substantial challenges regarding
storage and transmission. This is particularly problematic in
telemedicine contexts, where bandwidth may be limited. The
difficulty is further magnified in remote or resource-limited
areas,  where  access  to  advanced  medical  imaging  and
prompt  communication  between  healthcare  providers  and
patients is vital. Addressing these challenges is essential to
ensuring equitable access to healthcare and maintaining the
quality  and  accuracy  of  medical  assessments  in
telemedicine.

The  primary  objective  of  this  work  is  to  develop
advanced  methods  for  compressing  and  managing  large
medical  image  files,  particularly  MRI  data,  without
compromising image quality. This objective aims to enhance
the  security  and  efficiency  of  telemedicine  services  by
ensuring the integrity and clinical utility of medical images
during  transmission  and  storage.  Furthermore,  by
addressing  the  challenges  associated  with  the  substantial
size of MRI files and the limitations of current compression
techniques,  the  proposed  solutions  seek  to  facilitate
accurate  diagnosis  and  treatment  planning,  thereby
improving  access  to  healthcare,  especially  in  remote  or
resource-limited  settings.

The primary contributions of this work are as follows:
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1.1.1. Wavelet Analysis in Image Compression
Wavelet  analysis  is  employed  to  approximate  image

information,  breaking  it  down  into  sub-signals  and  sub-
images.

1.1.2. Enhanced Pixel Approximation
The method utilizes diagonal, vertical, and horizontal

features of images, along with approximating sub-signals,
to improve pixel approximation for compression purposes.

1.1.3. Minimized Computational Complexity
The  effective  application  of  Wavelet  Transform  (WT)

reduces  computational  complexity  by  providing  efficient
frequency and time localization.

1.1.4. Signal-based Compression
The  compression  process  leverages  WT  to  capture

even  the  smallest  signal  features,  ensuring  detailed
compression  based  on  signal  characteristics.

1.1.5. Optimized Lossless Compression
During  transmission,  the  hybrid  transformation

method  quantizes  coefficients  to  achieve  optimized,
lossless  compression  of  images.

This paper is structured as follows: Section 2 contains
the literature review. Section 3 outlines the materials and
methodology. Section 4 presents the analysis and findings.
Finally, section 5 concludes the work.

2. RELATED WORKS
Tarun Agrawal et al. [5] discussed various state-of-the-

art  deep  learning  models,  which  were  evaluated  and
compared on an unbalanced dataset for three-class brain
tumor classification. The results of their experimentation
indicate that the Inception models outperformed all other
models for this specific classification task. Manoj Diwakar
et al. [6] introduced a novel weighted function employed
by fractional order total variation for CT image denoising,
addressing issues such as the blocky effect. Moreover, to
resolve the non-convex optimization problem for improved
solutions,  they examined two different  methods:  (i)  Split
Bregman and (ii) Augmented Lagrangian. These methods
were  evaluated  using  the  proposed  weighted  fractional
total variation denoising approach. Ajay Krishan Gairola et
al.  [7]  proposed  a  Fully  Fused  Network  (FFN)  that
incorporates  an  Improved  Single  Block  (ISB)  and  an
Improved  Fusion  Block  (IFB)  to  achieve  optimal
performance. This approach involves the development of a
convolutional neural network-based model for multi-class
recognition of skin images. The ISB is utilized to segment
diseases  in  the  skin  images,  enhancing  the  overall
accuracy and efficiency of the network. Sunil Kumar et al.
[8]  conducted  a  comprehensive  examination  of  how
machine  learning  enhances  the  exploration  of  imaging
modalities  in  detecting  prominent  lung  diseases.  Their
review  encompasses  the  utilization  of  various  machine
learning  paradigms,  recent  advancements  in  imaging
modalities, and an overview of publicly available datasets
used in this field. This research provides insights into the

evolving  landscape  of  medical  diagnostics  through
advanced computational techniques. Junbo Peng et al. [9]
proposed  an  efficient  approach  involving  a  conditional
denoising  diffusion  probabilistic  model  (DDPM).  They
employed a time-embedded U-net architecture integrated
with  residual  and  attention  blocks.  This  method  aims  to
iteratively transform a white Gaussian noise sample into
the  desired  CT  distribution  conditioned  on  CBCT  (cone-
beam  computed  tomography).  This  innovative  technique
showcases  advancements  in  utilizing  deep  learning  for
enhancing  imaging  modalities  through  sophisticated
probabilistic  modeling.  Kiran  et  al.  [10]  introduced  a
Singular  Value  Decomposition  (SVD)-based  method  for
compressing  medical  images.  This  technique  leverages
SVD to decompose the image matrix into singular vectors
and  values,  thereby  reducing  redundancy  and  achieving
compression  while  preserving  essential  diagnostic
information. SVD-based compression methods are known
for  their  effectiveness  in  medical  imaging  due  to  their
ability  to  retain  image  quality  and  facilitate  efficient
storage and transmission of medical data. Bharath K N et
al.  [11]  elucidated  optimal  machine  learning-based
techniques  for  medical  image  compression  in  smart
healthcare  applications.  Their  research  focuses  on
leveraging advanced machine learning models to achieve
efficient compression while maintaining diagnostic quality.
This approach aims to enhance the storage, transmission,
and  retrieval  of  medical  images,  thereby  supporting
improved  healthcare  delivery  through  smart  technology
integration.

3D medical images often exhibit excellent compression
performance,  and  decompressed  3-D  image  quality  is  a
crucial  component.  In  addition,  because  of  this,  the
preferred  techniques  for  transmitting  the  decompressed
and  compressed  medical  images  are  lossless  or  bit-
preserving algorithms [12-14]. Since quality and compres-
sion  performance  are  mutually  exclusive,  compression
techniques  without  loss  have  high-quality  images  with
minimal  performance  of  compression  [15,  16].  Further-
more, because of this unusual inverse relationship, one of
the  two  performance  metrics  must  be  sacrificed:  image
quality  or  compression  efficiency.  Therefore,  the  best
image compression technique is one that equally enhances
both  aspects  [17,  18].  The  latest  models  of  compression
use  computationally  intensive  deep  learning-based
approaches  [19].

Applied  2D  orthogonal  WT  coefficients  and  the  local
estimated  noise  were  used  to  code  and  quantify  the
modified  image  sensitivity.  A  significant  amount  of
compression is provided by the human visual system [20].
Big medical data CS, fractional Fourier and chaos in image
encryption,  fusion,  and  compression  Transforms  were
applied concurrently. The method was created to decrease
data and Keyboard simplification [21]. The development of
secure and lossless digital picture watermarking to protect
the  privacy  of  patient  information  in  databases,  such  as
DWT  and  DCT  databases.  Performance  PSNR  measure-
ments  and  their  relationships  to  the  entire  image  are
development  elements  diminution  [22].  The  quick  and
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secure transfer of  primary images was accomplished via
DWT  online.  The  outcomes  demonstrated  that  the
algorithms convey critical images swiftly and safely [23].
The 3-D hierarchical listless clock algorithm (3D-HLCK), a
modified 3-D block coding system with a listless form, was
proposed by Senapati et al. [24]. The 3-D set partitioning
embedded block approach (3D-SPECK), developed by Tang
and Pearlman [10], encodes 3-D volumetric picture data by
taking  advantage  of  the  interdependence  in  every
dimension.  An  end-to-end  learning-based  system for  3-D
volumetric  picture  reduction  was  created  by  Chen et  al.
[25].  The  approach  predicts  the  entropy  coding
distribution  using  inter  and  intra-slice  information.
Additionally,  it  makes  use  of  two  innovative  gating
strategies to enhance the aggregation of inter and intra-
slice  information.  The  lossless  compression  approach  by
Nagoor et al. [26] presented a neural network trained to
be a 3-D data predictor for volumes of medical images that
contain  images  with  tones  and  colors  of  65,536  levels.
Furthermore, Zerva et al. [27] suggested a modification to
the  typical  Wavelet  Difference  Reduction  (WDR)  method
employing  Mean  Co-located  Pixel  Difference  (MCPD)  to
determine the ideal slice number which demonstrates the
greatest  correlation  in  temporal  and  spatial  domain.
According  to  an  increased  Structural  Similarity  index
(SSIM)  and  PSNR,  the  slices  with  significant
spatiotemporal coherence are stored as a single volume.
Images are  compressed using a  variety  of  unchangeable
standards. The Joint Photographic Experts Group (JPEG) is
the  most  utilized  standard  for  medical  purposes.
Furthermore, by including compressed data detailing the
differences between the compressed and original image in
an associated DAC file.

Makarichev  et  al.  [28]  changed  the  irreversible
Discrete Atomic Compression (DAC) technique. A rebuilt
image without  any  distortions  is  generated by  adding to
the compressed image. Golomb Rice coding, along with its
architecture of  hardware,  was used by Lee et  al.  [29]  to
design a high-throughput image compression system. For
aesthetically  lossless,  low-latency,  lightweight  picture
coding,  Descampe  et  al.  [30]  suggested  the  JPEG-XS
compression technique.  A comparable  compression ratio
to  that  of  JPEG  2000  is  achieved  by  this  worldwide
standard.  A hybrid strategy was developed by Min et al.
[31]  to  compress  3-D  medical  photographs.  A  hybrid
algorithm divides medical data into several sections using
the anatomical properties of the medical images. The best
predictors in each area are then created by a deep neural
network. A Back Propagation (BP) trained neural network
and  a  fractional  order  memristive  chaotic  circuit  were
used by Yang et  al.  [32]  to  build  an image compression-
encryption  technique.  A  loss-less  compression  method
based  on  the  Multi-Layer  Perceptron  (MLP)  neural
network  was  developed  by  Rhee  et  al.  [33].  Prediction
errors  and  contexts  are  output  from  the  MLP,  and  for
adaptive  arithmetic  encoders,  they  are  given  as  input.
Long Short-Term Memory (LSTM) neural  networks were
used by Zhu et al. [34] to construct a predictor for lossless
compression.  Xu  et  al.  [35]  worked  on  enhancing  the

Singular Value Decomposition (SVD) technique utilizing a
singular  vector  sparse  recovering  method,  which  is  one
example of recent irreversible compression techniques. An
image compression framework was created by Guo et al.
[36] for computer vision applications in embedded devices.
The  trade-off  between  visual  performance  and  memory
traffic is used by the framework. A compression technique
for  medical  images  was  developed  by  Sadchenko  et  al.
[37]  using  a  sample  decimation  approach  while
considering the unique characteristics of medical images.
ANNs  are  used  in  several  lossy  techniques  to  boost
compression ratios. Convolutional neural networks (CNN)
were utilized by Dua et al. [38] to compress hyperspectral
pictures. The max pooling, convolution, and auto-encoder
layers  of  CNN are  combined  by  the  method  to  decrease
the  dimension  of  the  image  and  create  a  compressed
image.  Furthermore,  by  using  the  CNN  decoder  and
transpose  convolution  layer  to  reverse  the  CNN's
processes,  the  image  can  be  reconstructed  with  lost
information.

Existing  region-based  image  compression  methods
offer  valuable  insights  and  strategies  that  can  be
leveraged to enhance the proposed wavelet-based efficient
medical  image  compression  system.  Here  are  some
potential outcomes of existing methods and how they can
be integrated or improved upon in the proposed system:

2.1. Improved Compression Efficiency
Existing  region-based  compression  methods  have

demonstrated  success  in  achieving  higher  compression
ratios while preserving important diagnostic information
within  specific  regions  of  interest  (ROI).  Moreover,  by
integrating  adaptive  compression  techniques  based  on
image content and utilizing wavelet transforms tailored to
ROI, the proposed system can further optimize compres-
sion  efficiency,  ensuring  minimal  loss  of  relevant  image
details.

2.2. Preservation of Diagnostic Information
The proposed system can benefit from the outcomes of

existing  methods  by  prioritizing  the  preservation  of
diagnostic  features  within  ROI.  Furthermore,  by
incorporating  advanced  compression  algorithms  that
prioritize the encoding of critical anatomical structures or
pathological findings, the system can ensure that essential
diagnostic  information  is  accurately  represented  in  the
compressed images.

2.3. Enhanced Visual Quality
Existing region-based compression methods emphasize

the importance of maintaining visual quality, particularly
in  areas  critical  for  diagnosis.  In  addition,  by  employing
sophisticated compression algorithms and wavelet-based
reconstruction techniques optimized for preserving image
fidelity  within  ROI,  the  proposed  system  can  enhance
visual quality and reduce artifacts, resulting in clearer and
more detailed compressed images.

2.4. Adaptability and Customization
The proposed system can draw from existing methods'
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adaptability  to  specific  applications  and  imaging
modalities.  Additionally,  by  offering  customizable
compression  parameters  and  adaptive  compression
strategies  tailored  to  different  types  of  medical  images
(e.g.,  MRI,  CT  scans,  ultrasound),  the  system  can
accommodate diverse imaging requirements and optimize
compression performance for various clinical scenarios.

Incorporating  insights  and  strategies  from  existing
region-based  image  compression  methods  can  help  the
proposed wavelet-based efficient medical image compres-
sion  system  overcome  challenges  and  achieve  superior
compression  performance,  ensuring  high-quality  com-
pressed images suitable for clinical diagnosis and analysis.

3. PRELIMINARIES

3.1. Region of Interest
As  per  the  constraints  of  lossy  and  lossless

compression techniques, the fundamental notion of ROI is
established. The compression ratio for well-known lossless
compression techniques is roughly its original size of 25%,
however, in a lossy encoder, it is considerably higher (up
to 1%). Here, the data will be lost. Then, due to the loss,
some visual components will be impaired, which is crucial
for  diagnosis,  as  shown  in  Fig.  (1).  Therefore,  a  hybrid
approach that would handle the diagnostically important
section  (ROI)  and  give  a  high  compression  ratio  is
required. In medical applications, where some aspects of
the image are more crucial for diagnosis than others, ROI
functionality  is  crucial.  The  diagnostically  important

information  is  typically  restricted  to  very  tiny  regions,
between 5 and 10% of the entire image area, in medical
imaging.  These  regions,  in  such  circumstances  must  be
highly  encoded  compared  to  background.  These  regions
must  be  sent  first  with  a  high  priority  during  image
transmission  for  telemedicine  applications.

4. MATERIALS AND METHODS
Region-Based  Compression  (RBC),  Progressive

Transmission, and Lossless Compression are fundamental
features  of  a  compression  technique  suitable  for
telemedicine applications. RBC allows users to select any
arbitrary shape as the Region of Interest (ROI), providing
flexibility  and  adaptability  to  various  diagnostic  needs.
Lossless  compression  techniques  such  as  Huffman,
Arithmetic, Run-Length Encoding (RLE), and Lempel-Ziv-
Welch  (LZW),  among  others,  are  employed  to  compress
the ROI, ensuring that no data is lost during compression.
Meanwhile,  the  Set  Partitioning  in  Hierarchical  Trees
(SPIHT)  algorithm  is  utilized  to  compress  the  Non-ROI
portion  following  a  wavelet  transform,  maintaining  the
integrity  of  image  details.  The  latest  advancements  in
picture compression have centered around wavelet-based
methods,  which  offer  unique  advantages  such  as  the
ability to work with multiple resolutions simultaneously, a
feature  not  available  in  other  compression  approaches.
This capability enables efficient handling of diverse image
characteristics  and  resolution  requirements,  making
wavelet-based methods highly effective for medical image
compression.

Fig. (1). Medical image’s various parts.
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Fig. (2). Algorithm block diagram.

In  Fig.  (2),  the  proposed  block  diagram  outlines  a
region-based  image  compression  framework  tailored  for
medical  imaging  applications.  The  process  commences
with  the  segmentation  of  the  input  medical  image  into
distinct regions of interest (ROI) and non-ROI components.
Mathematically, this segmentation can be represented as
(1):

(1)

Where  (I_input)  denotes  the  original  medical  image,
and (I_segmented) represents the segmented image with
identified ROI and non-ROI areas. Subsequently, the ROI
portion  undergoes  compression  using  the  Discrete
Wavelet  Transform  (DWT),  a  technique  well-suited  for
capturing  spatial  frequency  information  efficiently.  The
DWT operation on the ROI region can be expressed as Eq
(2):

(2)

Where (I_{ROI}) is the segmented region of interest,
and (LL,  LH, HL,  HH) corresponds to the approximation
and  detail  coefficients  at  different  scales.  These
coefficients are then encoded using the Set Partitioning in
Hierarchical Trees (SPIHT) algorithm, known for its ability
to achieve high compression ratios while preserving image
quality.  The  encoding  process  is  mathematically
represented  as  Eq  (3):

(3)

The  non-ROI  areas,  less  critical  for  diagnosis,  may
undergo  a  simpler  form  of  compression  or  be  stored

without compression to balance resource allocation.  The
final  compressed  image  integrates  both  the  compressed
ROI  and  the  non-ROI  segments,  optimizing  storage  and
transmission within healthcare systems Eq (4):

(4)

This  comprehensive  approach,  depicted  in  block
diagram 2, underscores the systematic workflow designed
to  enhance  healthcare  information  management  by
reducing  storage  demands  and  facilitating  efficient  data
transmission  while  upholding  the  diagnostic  integrity  of
Magnetic Resonance Medical Images.

MRI or CT image has mainly three parts:
I. ROI Part.
II. Non ROI part.
III. Background.
Radiologists with expert training choose the ROI. The

ROI mask is created to cover the foreground completely,
and background pixel values are set to zero depending on
the selected area. Despite having a dark appearance, the
background regions do not contain any values for the grey
scale.  Cross-section  image  of  a  medical  condition  is
represented  statistically  as  shown  in  Fig.  (3).

Using Eq. (4), the background is set to zero:

(5)

The  image’s  threshold  value  (img)  backdrop  is
indicated here by the variable x_th. Since the backdrop is
not  necessary,  lowering  its  content  to  zero  will  fetch  us
the  lossless  compression  completely,  creating  an  image
that is ready for processing.
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Fig. (3). Statistical representation of medical image’s cross-sectional view.

Fig. (4). Flow diagram of the coding algorithm.

Additionally,  morphological  operations,  which have a
value of  “1”  in  the front  and “0”  in  the background,  are
used  efficiently.  Once  the  Non-ROI  part  and  ROI
(IMG_ROI)  image  parts  have  been  separated,  the  image
will be ANDed logically with the mask, as shown in Eq. (5).

(6)

Fig.  (4)  illustrates  the  flow  diagram  of  the  proposed
compression  algorithm,  delineating  various  fundamental
steps involved in the process:

4.1. Image Reading and Dimension Extraction
The algorithm begins  by  reading the  image from the

database  and  extracting  its  dimensions  to  establish  the
framework for subsequent processing.

4.2. Background Removal
Background  removal  is  performed  by  applying  a

thresholding technique,  separating the foreground (ROI)
from the background.

4.3. ROI Selection and Separation
The user selects the Region of Interest (ROI), and the

algorithm  separates  the  image  into  Non-ROI  and  ROI
based  on  this  selection.

4.4. Compression Level Specification
The  user  specifies  the  desired  level  of  compression,

providing  flexibility  to  adjust  the  compression  ratio
according  to  specific  requirements.

����������	
�� 
	����� 
	����� �������	
��

��������������������
�������

������������
�

�������������
�

��� 
�
����

��������
��������
���
�����

��������
�������

���
�����

�
���� �����
�!�����"

����#$%&&'�����&

���
�������

�'�'%('�����&

������������������

����
���)����
���

����
���)����

�
����

�
����������
���������

������������
�

��������������������



8   The Open Public Health Journal, 2024, Vol. 17 Bharath et al.

4.5. Wavelet Decomposition
Wavelet decomposition is applied to both the ROI and

non-ROI regions, enabling the image to be represented in
a multi-resolution format suitable for compression.

4.6. Wavelet Reconstruction
The  algorithm  performs  wavelet  reconstruction  by

recursively combining the decomposed ROI components,
effectively reconstructing the compressed image.

4.7. Quality Evaluation
Finally, the reconstructed image's quality is evaluated

using metrics such as Peak Signal-to-Noise Ratio (PSNR)
and  Mean  Squared  Error  (MSE),  comparing  it  to  the
original  image  to  assess  the  effectiveness  of  the
compression  algorithm.

This flow diagram provides a comprehensive overview
of the compression process, from image preprocessing to
quality evaluation, offering insights into each stage of the

algorithm's operation.

5. RESULTS AND DISCUSSION
In  this  section,  we  thoroughly  evaluate  the  perfor-

mance of the proposed methodology. The simulation was
conducted  using  MATLAB  2021b,  offering  a  robust
platform for accurate analysis [39, 40]. The results derived
from  simulating  a  specific  set  of  test  images  using  our
proposed algorithm are meticulously detailed in Table 1.
Furthermore,  to  validate  our  findings  rigorously,  we
utilized  medical  images  sourced  from  the  Open-i  image
database [41], which offers a diverse array of image data
for  evaluation.  These  images  encompass  a  spectrum  of
sizes,  ranging  from  dimensions  such  as  256×256  and
512x512,  to  1024x1024  pixels,  facilitating  a  thorough
assessment  across  various  resolutions.  This  compre-
hensive approach ensures robust evaluation and validation
of  our  algorithm's  performance  across  different  image
characteristics.

Table 1. Datasets used for the proposed system.

Fetal Ultrasound1 (image1) Brain(image2) Hand (image3)

Foot (image 4) Ligament (image5) Leg (image 6)

Skull1 (image 7)
Tumor MRI (image 8) Fetus (image 9)
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Fetal Ultrasound2 (image 10) Skull2 (image 11)
Chest (image 12)

5.1. Evaluation Metrics
In order to thoroughly evaluate the performance of the

proposed  region-based  medical  image  compression
technique,  several  key  metrics  are  computed.  These
metrics  include  the  Compression  Ratio  (CR),  Structural
Similarity  Index  (SSIM),  and  Peak  Signal-to-Noise  Ratio
(PSNR).  Each  of  these  metrics  plays  a  crucial  role  in
assessing the effectiveness of the compression method and
its impact on image quality.

5.1.1. Peak Signal-to-noise Ratio (PSNR)
Peak  Signal-to-Noise  Ratio  (PSNR)  between  any  two

pictures is calculated in decibels (dB). The quality of the
compressed and original images is evaluated by ratio. The
PSNR scales from 0 to infinity; the greater the PSNR, the
higher  the  compressed  image  quality.  The  equation  for
PSNR is given by Eq (7).

(7)

Where MSE is given by Eq. (8)

(8)

5.1.2. SSIM
The  visual  distortion  between  an  original  and

compressed image is represented by the measure known
as SSIM. The SSIM is  a  2-variable function between the
two pictures x and y, and it is calculated between a pair of
the two images' local square overlapping windows x and y.
Formula (9) defines the SSIM calculation.

(9)

5.1.3. Compression Ratio (CR)
The  Compression  Ratio  quantifies  the  degree  of

compression  achieved  by  comparing  the  size  of  the
original  uncompressed  medical  image  to  the  size  of  the
compressed image. It is calculated as the ratio of the size
of the original image to the size of the compressed image.

A  higher  CR  indicates  a  more  efficient  compression
process,  where  a  larger  reduction  in  file  size  has  been
achieved without significant loss of image information. Eq.
(10) defines the CR as the bitstream ratio of original and
compressed images.

(10)

In this study, a CT scan image of a brain with tumors
was selected as the primary image for analysis. The image
was  obtained  from  Radiopaedia.org,  a  reputable  online
resource  for  medical  images.  Fig.  (5)  illustrates  the
corresponding  segmentation  process,  which  involves
delineating and identifying specific regions or structures
within  the  brain  image.  This  segmentation  process  is
crucial for isolating areas of interest, such as tumors, from
the surrounding brain tissue.  Additionally,  by  accurately
segmenting the image, researchers can focus on analyzing
and  processing  the  relevant  regions,  facilitating  further
investigation into the characteristics and properties of the
tumors.  This  segmentation  step  plays  a  vital  role  in  the
overall assessment of the proposed region-based medical
image compression technique, as it ensures that only the
pertinent regions are considered during the compression
process,  thereby  optimizing  the  compression  results  for
diagnostic purposes.

In  the  initial  stage  of  image  processing,  several  pre-
processing  steps  are  applied  to  ensure  optimal  image
quality  and  suitability  for  subsequent  analysis:

5.1.3.1. Re-sampling of Image
The  image  undergoes  re-sampling  to  standardize  its

resolution  or  size,  ensuring  consistency  across  different
images and facilitating uniform processing.

5.1.3.2. Enhancement of Grey Scale Contrast
Techniques  are  employed  to  enhance  the  contrast  of

the image in grayscale, improving the visibility of details
and structures within the image.

5.1.3.3. Removal of Noise
Various noise reduction methods are implemented to

eliminate  unwanted  artifacts  or  disturbances  from  the
image,  enhancing  clarity  and  accuracy.

(Table 1) contd.....
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Fig. (5). Segmentation process of medical images.
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5.1.3.4. Mathematical Operations
Mathematical operations may be applied to manipulate

the  pixel  values  of  the  image,  adjusting  brightness,
contrast,  or  other  parameters  as  needed.

5.1.3.5. Manual Correction
In some cases, manual intervention may be required to

correct any distortions, artifacts, or anomalies present in
the image, ensuring accuracy and reliability.

5.1.3.6. RGB to Gray Scale Image Conversion
If  the  original  image  is  in  RGB  (Red,  Green,  Blue)

format, it is converted to grayscale to simplify processing
and  analysis,  as  grayscale  images  contain  only  intensity
information without color.

Moreover, by undergoing these pre-processing steps,
the  medical  image  is  optimized  for  subsequent  analysis,
ensuring that any abnormalities or features of interest are
accurately  captured  and  represented  for  diagnostic
interpretation.

After  the  initial  pre-processing  phase,  the  next  step
involves enhancing the grayscale image. Image enhance-
ment  aims  to  optimize  the  digital  image  to  ensure  it  is
well-suited for further analysis. During this stage, various
adjustments are made to the image to enhance its clarity
and  suitability  for  image  analysis.  One  critical  aspect  of
enhancement  involves  removing  film  artifacts,  such  as
labels and marks, that may be present on the MRI image.
Additionally,  high-frequency  components  that  could
potentially  interfere  with  analysis  are  also  removed  or

minimized.  Fig.  (6)  illustrates  the  different  stages  of
preprocessing and the corresponding results, showcasing
the  transformation  and  improvement  of  the  grayscale
image  throughout  the  enhancement  process.  These
enhancements are essential for maximizing the quality and
interpretability  of  the  medical  image,  ultimately
facilitating  more  accurate  and  reliable  analysis  for
diagnostic  purposes.

• Image-Enhancement Methods.
• Morphological operators are used to filter.
• Histogram equalization.
• Removal of Noise with Wiener filter.
Image segmentation is a crucial step in medical image

analysis,  involving  the  partitioning  of  an  image  into
multiple regions or segments based on shared properties
such as gray-level intensity, color, texture, brightness, and
contrast. This process serves several important purposes:

5.1.3.6.1. Study of Anatomical Structure
Segmentation allows for the detailed examination and

analysis  of  anatomical  structures  within  the  medical
image,  enabling  clinicians  to  identify  and  study  specific
regions of interest with precision.

5.1.3.6.2. ROI Identification
By  segmenting  the  image,  regions  of  interest  (ROIs)

containing abnormalities or areas of clinical interest, such
as  tumors  or  lesions,  can  be  accurately  delineated  and
identified for further analysis and diagnosis.

Fig. (6). Various stages of developed software for image.

��������	
 ��
���
�����	


����������	
�����
���	������
���
�����	




12   The Open Public Health Journal, 2024, Vol. 17 Bharath et al.

Fig. (7). Segmentation of the ROI part of the image.

5.1.3.6.3. Measuring Tumor Growth
Segmentation  facilitates  the  quantification  of  tumor

growth  by  accurately  measuring  the  volume  of  tissue
occupied by the tumor. This quantitative analysis provides
valuable insights into disease progression and response to
treatment.

5.1.3.6.4. Treatment Planning for Radiation Therapy
Segmentation  plays  a  crucial  role  in  treatment

planning  for  radiation  therapy  by  assisting  clinicians  in
delineating  target  volumes  and  critical  structures.  This
information is essential for calculating the optimal dose of
radiation to deliver to the tumor while minimizing damage
to surrounding healthy tissues.

Overall,  image  segmentation  is  a  fundamental
technique  in  medical  imaging  that  enables  precise
analysis,  diagnosis,  and  treatment  planning.  In  addition,
by  accurately  delineating  anatomical  structures  and
identifying regions of interest, segmentation enhances the
effectiveness of medical image analysis and contributes to
improved patient care outcomes.

After the segmentation process, the next step involves
the  application  of  Discrete  Wavelet  Transform  (DWT)  to
both  the  non-ROI  and ROI  parts  of  the  image.  DWT is  a
powerful signal processing technique that decomposes an
image into its constituent frequency components, allowing
for  multi-resolution  analysis.  This  decomposition  is
performed  hierarchically,  generating  a  set  of  approxi-
mation  and  detail  coefficients  at  different  scales.

Fig.  (7)  illustrates  the  application  of  DWT  to  the
segmented image. For both the Non-ROI and ROI regions,
the  image  is  decomposed  into  approximation  and  detail
coefficients  across  multiple  scales.  This  decomposition
effectively  captures  the  image's  spatial  and  frequency
characteristics,  enabling  efficient  representation  and
compression.

Additionally,  by  applying  DWT,  the  image  is
transformed  into  a  format  that  facilitates  efficient

compression while  preserving important  image features.
This transformed representation allows for effective data
reduction  without  significant  loss  of  diagnostic  infor-
mation.  Additionally,  DWT  enables  the  extraction  of
relevant  image  features  that  can  be  utilized  for  further
analysis,  such  as  feature  extraction  for  classification  or
pattern recognition tasks. Overall, the application of DWT
after  segmentation  enhances  the  image  processing
pipeline by providing a versatile and efficient method for
the  representation  and  analysis  of  medical  images.  This
step  is  crucial  for  optimizing  the  performance  of
subsequent  compression  and  analysis  techniques  in
medical  image  processing  workflows.

In our approach, users have the flexibility to select the
number  of  levels  for  Discrete  Wavelet  Transform  (DWT)
according  to  their  preferences.  In  this  study,  we  have
opted  for  a  4-level  transform,  which  offers  a  balance
between granularity and computational efficiency. Fig. (8)
illustrates  the  graphical  representation  of  the  DWT
decomposition  at  different  levels,  showcasing  the  hier-
archical  structure  of  the  transformed  image.

Once  the  DWT  is  applied  to  the  medical  image,
compression, and analysis are performed on the resulting
frequency bands. Fig. (9) provides a visual representation
of  the  DWT  compression  process  and  highlights  the
analysis  of  different  frequency  bands.  Additionally,  by
decomposing  the  image  into  multiple  frequency
components,  DWT  enables  the  extraction  of  relevant
information  from  various  scales  and  orientations,
facilitating  more  effective  compression  and  analysis.
Through  this  approach,  we  can  effectively  leverage  the
multi-resolution properties of DWT to capture both coarse
and  fine  image  details.  This  allows  for  more  efficient
compression  while  preserving  important  diagnostic
information.  Additionally,  the  analysis  of  different
frequency  bands  provides  valuable  insights  into  the
underlying  structure  and  characteristics  of  the  medical
image,  aiding  in  diagnostic  interpretation  and  decision-
making.
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Fig. (8). Discrete wavelet transform levels.

Fig. (9). DWT compression.
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Fig. (10). Non-ROI and DWT-compressed ROI image.

Overall,  the  integration  of  DWT  into  the  image
processing  pipeline  enhances  the  versatility  and
effectiveness of medical image compression and analysis
techniques, contributing to improved diagnostic accuracy
and efficiency in healthcare applications.

After  applying  Discrete  Wavelet  Transform  (DWT)  to
both the non-ROI and ROI regions of the medical image,
compression  is  performed  using  Set  Partitioning  In
Hierarchical  Trees  (SPIHT)  encoding  and  decoding

techniques.  SPIHT  is  an  extension  of  the  Embedded
Zerotree  Wavelet  (EZW)  algorithm,  known  for  its
efficiency  in  image  compression.

Fig. (10) illustrates the compressed non-ROI and ROI
regions  obtained  using  DWT.  These  compressed  regions
are  then  encoded  using  the  SPIHT  algorithm,  which
significantly improves upon its predecessor by introducing
innovative  approaches  to  coefficient  partitioning  and
refinement information transmission. One notable feature

Fig. (11). Sorting pass in SPIHT algorithm.
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Fig. (12). Refinement pass in SPIHT algorithm.

of  the  SPIHT  bitstream  is  its  compactness,  achieved
through a two-step process involving refinement pass and
sorting  pass.  During  the  refinement  pass,  refinement
information is transmitted to further improve compression
efficiency. In the sorting pass, coefficients are organized
into  lists  such  as  the  Largest  Intensity  Sequences  (LIS),
Last Significant Pixels (LSP), and Insignificant Pixels (LIP),
as depicted in Figs. (11 and 12).

Similarly,  by  employing  SPIHT  encoding,  the  comp-
ressed image data is efficiently organized and transmitted,
maximizing compression ratios while preserving essential
image features. This approach ensures that diagnostic in-
formation  is  retained  while  minimizing  storage  requi-
rements  and  transmission  bandwidth,  making  it  well-
suited  for  medical  image  compression  applications.

Following the compression phase,  the process proce-
eds to decompression, which involves reconstructing the
original  image  from  the  compressed  data.  Initially,
decoding is performed using the SPIHT algorithm, which
efficiently  deciphers  the  compressed  bitstream  and
retrieves  the  encoded  coefficients.

The  Non-ROI  part  is  reconstructed  using  the  inverse
Discrete Wavelet Transform (DWT). This process reverses
the  DWT  transformation  applied  during  compression,
restoring  the  Non-ROI  region  to  its  original  state.  The
resulting  decompressed  image  of  the  Non-ROI  part  is
depicted  in  Fig.  (13).  Similarly,  the  ROI  part  undergoes
reconstruction  using  the  inverse  DWT,  as  illustrated  in
Fig.  (14).  By  reversing  the  DWT  transformation  applied
during  compression,  the  original  details  and  features  of

the  ROI  region  are  restored,  ensuring  that  critical  diag-
nostic  information  is  preserved.  Through  this  decom-
position process, the compressed image data is effectively
reconstructed,  allowing  for  accurate  visualization  and
analysis of both the non-ROI and ROI regions. Likewise, by
retaining essential image features and details, the decom-
pressed  images  facilitate  accurate  diagnostic  interpre-
tation  and  decision-making  in  medical  imaging  applica-
tions.

Figs.  (15  and  16)  provide  a  detailed  analysis  of  the
compression  ratio  (CR)  and  Peak  Signal-to-Noise  Ratio
(PSNR) for a range of MRI images, illustrating the efficacy
of  the  proposed  compression  method.  Our  algorithm
exhibits  notable  performance  by  achieving  significant
compression  ratios  without  compromising  the  quality  of
the  reconstructed  images,  as  indicated  by  consistently
high  PSNR  values.  This  graphical  representation  under-
scores  the  effectiveness  of  our  approach  in  balancing
compression efficiency with image fidelity, which is crucial
for  applications  demanding  both  storage  economy  and
diagnostic  image  integrity.  These  readings  indicate  a
discernible  level  of  quality  in  the  reconstructed  images,
where  higher  Peak  Signal-to-Noise  Ratio  (PSNR)  values
typically  signify  superior  reconstruction  fidelity.  Beyond
PSNR,  Signal-to-Noise  Ratio  (SNR)  was  also  assessed  to
gauge the extraction performance further. Evaluating both
metrics  provides  a  comprehensive  assessment  of  our
method's  ability  to  reconstruct  images  accurately  while
maintaining fidelity and minimizing noise, which is crucial
for ensuring reliable diagnostic and analytical outcomes in
medical imaging applications.
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Fig. (13). Decompressed images of ROI-based encoding with respect to level.

Fig. (14). Reconstructed received medical image.

Furthermore, to provide a comprehensive evaluation,
we applied the suggested algorithm at a bit rate of 0.5 bits
per  pixel,  resulting  in  a  compression  ratio  of  3.  Table  2
presents  the  results  in  terms  of  PSNR,  Structural
Similarity  Index  (SSIM),  and  CR  for  five  photos  in  our

dataset.  Notably,  the  PSNR values  range from 80 to  88,
indicating  excellent  image  fidelity.  A  PSNR  value
exceeding 88 signifies outstanding image quality, closely
resembling  the  original  image,  while  values  above  80
indicate very good image quality. Furthermore, the SSIM
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values  range  from  0.9  to  0.98,  with  values  nearing  1
indicating  nearly  identical  images.  This  high  level  of
similarity  corroborates  the  promising  outcomes  of  our
method.  Notably,  three  out  of  every  five  photos  exhibit

PSNR values exceeding 85, underscoring the effectiveness
of  the  proposed  strategy  in  preserving  image  quality
during  compression.

Fig. (15). Compression ratio analysis with respect to the level of distortion.

Fig. (16). PSNR analysis with respect to the level of distortion.
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Table 2. Performance parameters for the proposed compression technique.

Input Medical Images PSNR (db) SSIM CR (%)

Image 1 81.22 0.9493 3.7
Image 2 87.45 0.9567 2.8
Image 3 84.98 0.9812 2.6
Image 4 86.68 0.9323 2.75
Image 5 82.65 0.8321 2.56
Image 6 73.23 0.8461 3.2
Image 7 81.24 0.8743 2.7
Image 8 89.98 0.8928 2.9
Image 9 87.15 0.9010 2.8
Image 10 87.09 0.9230 2.65
Image 11 81.25 0.889 2.56
Image 12 80.28 0.893 2.4

Table 3. Computational complexity of the proposed system.

Input Medical Images Image Size Size of ROI in Entire Image % of Saving Pixel

Image 2 256 × 256 75 × 75 91.41
Image 3 512 × 512 200 × 200 84.74
Image 8 1024 × 1024 600 × 600 65.66

In  summary,  the  proposed  compression  method
achieves  notable  compression  ratios  while  maintaining
high-quality  reconstructed  images,  as  evidenced  by  the
PSNR and  SSIM metrics.  These  results  demonstrate  the
efficacy  of  our  approach  in  efficiently  compressing  MRI
images without significant loss of image fidelity.

The computational complexity of our proposed system
for  compressing  the  Region  of  Interest  (ROI)  within  the
entire image is a critical aspect to consider. Our method
focuses  on  efficiently  compressing  specific  regions  of
interest,  which  are  often  smaller  subsets  within  larger
medical  images.  This  targeted  approach  involves  initial
segmentation and identification of the ROI using advanced
image  processing  techniques,  which  can  vary  in
complexity  depending  on  the  size  and  complexity  of  the
image  dataset.  Once  the  ROI  is  delineated,  our
compression algorithm applies optimized techniques such
as  predictive  coding  or  wavelet  transforms  tailored
specifically  for  the  ROI.  This  approach  minimizes
computational  overhead  by  concentrating  compression
efforts  on  the  most  diagnostically  relevant  parts  of  the
image, thus optimizing both processing time and storage
efficiency. Then, by strategically allocating computational
resources  to  the  ROI,  our  system  enhances  overall
performance without compromising the quality or integrity
of the medical  image data,  ensuring robust and efficient
handling of diagnostic information in clinical settings. The
percentage  of  saving  pixels  from  the  entire  image  is
calculated  in  Eq.  (11).

(11)

Table  3  provides  a  summary  of  the  computational

complexity of our proposed ROI-based image compression
system across  different  input  medical  images.  Each  row
details  the image size,  the size of  the Region of  Interest
(ROI) within the entire image, and the percentage of pixel
savings achieved through compression.

For  Image  2,  which  is  256x256  pixels,  the  ROI
occupies an area of 75x75 pixels, resulting in a substantial
saving  of  91.41%  of  pixels.  This  suggests  that  the
computational  complexity  is  primarily  influenced  by  the
size of the ROI relative to the entire image. Smaller ROIs
generally  require  less  computational  effort  for
segmentation and compression compared to larger ones.
Image 3,  with  dimensions  of  512x512 pixels  and an  ROI
size of 200x200 pixels, achieves a pixel saving of 84.74%.
Despite  the  larger  image  size  and  ROI,  the  system
efficiently manages computational complexity by focusing
compression efforts on the designated ROI area. In Image
8, which measures 1024x1024 pixels, the ROI expands to
600x600  pixels,  resulting  in  a  pixel  savings  of  65.66%.
Here,  the  larger  size  of  both  the  image  and  the  ROI
increases  computational  demands,  particularly  in  the
segmentation  and  compression  stages.

Overall,  the  computational  complexity  of  our  ROI-
based image compression system correlates  closely  with
the  size  of  the  ROI  and  the  percentage  of  pixel  savings
achieved. Smaller ROIs generally lead to higher compres-
sion  ratios  and  lower  computational  overhead,  whereas
larger  ROIs  necessitate  more  intensive  processing
resources.  Efficiently  managing  these  complexities
ensures  optimized  performance  in  terms  of  both  pro-
cessing  time  and  compression  efficiency  across  varying
medical image sizes and ROI dimensions.
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Table 4. Performance comparison of the same images under state-of-the-art methods.

Methods PSNR (DB) SSIM CR

Ref [37] 53 0.654 1.5
Ref [38] 60 0.743 2.1
Ref [39] 37 0.856 2.2

Proposed 87 0.9453 2.85

The  performance  of  the  proposed  method  was
rigorously compared with that of  other techniques using
similar image configurations. The results, as illustrated in
Table 4, unequivocally demonstrate the superiority of the
proposed strategy over the alternatives. Furthermore, we
conducted  a  comparative  analysis  of  the  Structural
Similarity  Index  (SSIM)  values  achieved  by  our  method
and  those  obtained  through  lossless  compression
techniques  employed  by  other  methods.  Notably,  our
approach  consistently  yielded  images  with  exceptional
visual  quality,  as  evidenced  by  the  SSIM  values.  These
findings  underscore  the  effectiveness  and  superiority  of
the  proposed  method  in  producing  high-quality  images
suitable  for  visualization  purposes.

The  effectiveness  of  the  threshold  application  on  the
coefficients  is  assessed  after  the  DWT  on  the  filtered
picture  and  after  applying  a  threshold  to  the  generated
coefficients.  A  two-level  decomposition and a  three-level
decomposition are two separate scenarios that are taken
into account. All coefficients below the threshold are set to
zero after the transformation. The findings show that there
was not too much noise in the image as a result of some
coefficients being discarded. Thus, the image's quality is
still present. The effect is visible in the high PSNR values.
The quantity of coefficients eliminated is quite intriguing.
This raises the likelihood of having several chains of zero
coefficients.  The  quantity  of  discarded  coefficients  rises
with the number of layers.

CONCLUSION
Every  image  contains  some  unnecessary  information

that  must  be  recognized  by  the  user  in  order  to  be
compressed.  Little  inaccuracy  is  introduced  into  the
system  by  the  floating  point  representation.  The  DWT's
faultless  reconstruction  property  makes  it  a  preferred
choice  for  usage  in  important  medical  applications.  In
addition to better outcomes than lossless techniques, ROI-
based compression also preserves data that is crucial for
diagnostics. Such a technique is advised for telemedicine
systems,  particularly  in  rural  areas  where  network
resources  are  constrained.  An  enhanced  iteration  of  the
proposed  method  could  integrate  automatic  selection  of
ROI for  compression,  based on both information content
and  image  characteristics.  In  addressing  real-time
applications  for  MR  DICOM  images,  consideration  of
computational  complexity  is  paramount,  with  the  Set
Partitioning  In  Hierarchical  Trees  (SPIHT)  algorithm
demonstrating  superior  performance  for  ROI-based
compression.  Additionally,  the  development  of  improved
recommender systems for large-scale, high-quality medical
images  will  be  pursued  through  the  integration  of

technologies  such  as  the  Internet  of  Medical  Things
(IoMT), medical imaging techniques, soft computing with
evolutionary  operators,  and  various  hybrid  image
processing  strategies.  These  advancements  aim  to
enhance diagnostic capabilities and optimize workflows in
medical imaging.
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