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Abstract:

Background: Kidney stones, common urological diseases worldwide, are formed from hard urine minerals in the
kidneys. Early detection is essential to prevent kidney damage and manage recurring stones. CT imaging has made
significant progress in providing detailed information for disease diagnosis.

Aim:  This  study  aimed  to  enhance  kidney  stone  detection  through  advanced  imaging  and  machine  learning
techniques.

Objective: The Guided Bilateral Feature Detector was proposed to identify and extract features for kidney stone
detection  in  CT  images.  Unlike  traditional  filters  like  Gaussian  and  Bilateral  filters,  the  Guided  Bilateral  Filter
Detector prevented halo artifacts and preserved image edges by employing a guide weight. The extracted features
were combined with the SVM algorithm to accurately detect kidney stones in CT images.

Methods: The proposed detector used the Guided Bilateral  Filter to reduce the halo artifacts in the images and
enhance the feature detection process. The detector operated in four stages to extract important features from CT
images, and a 128-feature point generator provided a more detailed representation in aiding kidney stone detection
and classification. The proposed detector combined with the Support Vector Machine algorithm to improve reliability
and reduce computational requirements.

Results: Experimental results showed that the proposed Guided Bilateral Feature Detector with SVM outperformed
existing models, including SIFT+SVM, SURF+SVM, PCA+KNN, EANet, Inception v3, VGG16, and Resnet50. The key
performance metrics achieved included an accuracy of 98.56%, precision of 98.9%, recall of 99.2%, and an F1 score
of 99%.

Conclusion: The findings indicate that the Guided Bilateral Feature Detector with SVM significantly enhances the
accuracy and reliability of kidney stone detection, providing valuable implications for clinical practice and future
research in medical imaging.

Keywords: Kidney stone detection, CT imaging, Guided bilateral feature detector, Support vector machine, Machine
learning, Urological diseases.
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1. INTRODUCTION
The kidney is the most vital organ in the human body.

Minerals  in  the  urine  cause  solid  particles,  known  as
kidney  stones.  Kidney  stones  are  common  all  over  the
world,  with  a  frequency  of  about  12% around  the  world
[1]. Kidney stones result from a synthesis of environmental
and genetic influences. In addition, certain meals, drugs,
being fat, and inadequate hydration can all contribute to
it.  Everyone,  regardless  of  ethnicity,  culture,  or  geo-
graphy, is affected by kidney stones. This kidney stone is
diagnosed by blood testing, urine tests, and scans. If the
stone  is  not  found  right  away,  then  surgery  might  be
needed  to  remove  it.  One  highly  efficient  method  of
correctly  detecting  the  stone  is  by  image  processing.  In
the  medical  field,  imaging  is  the  most  crucial  element.
Medical  imaging  techniques  like  CT,  Doppler,  and
ultrasound are used by practitioners to evaluate the inside
organs.

Currently,  Machine  Learning  (ML)  methods  have  been
utilized to address the most challenging problems in urology
health  care  [2].  Various  imaging  techniques  like  X-ray,
Ultrasound, Computed tomography (CT), and so forth, with
machine  learning  techniques,  have  been  combined  for
diagnosing kidney stone disease [3, 4]. However, detecting
kidney stone diseases using CT images has made significant
progress  by  providing  detailed  information  in  the  medical
field for disease diagnosis.

2. LITERATURE SURVEY
The Plain Intensity filter were applied to US images to

reduce  and  eliminate  the  addictive  noise,  and  Symlets,
Daubechies,  and  Biorthogonal  wavelet  sub-band  filters
extracted  the  features.  The  extracted  features  were
subjected to segmentation using RD-LSS (Reaction-Diffusion
-  Level  Set  Segmentation).  The  ML models  like  Multilayer
Perceptron,  Back  Propagation,  Support  Vector  Machine
(SVM), and Artificial Neural Network (ANN) were trained to
identify kidney stones in US images with an accuracy rate of
98.9% [5]. Primary renal diseases like kidney stones, cysts,
and  tumors  were  detected  with  a  total  of  12,446  CT
annotated  images.  Further,  Six  machine  learning  models,
such as  External  Attention Transformer (EANet),  Compact
Convolutional  Trans-former  (CCT),  Swin  transformers,
Resnet,  VGG16,  and  Inception  v3,  were  analyzed,  and  the
results  showed  that  the  Swin  transformer  model
outperformed the accuracy of 99.30% in diagnosing kidney
tumors, cysts, and stones than other states of the art models
[6].

A  novel  ExDark19  transfer  learning-based
classification  was  developed  to  identify  kidney  stones
using  CT  images.  The  most  informative  feature  vectors
were  selected  using  iterative  neighborhood  component
analysis (INCA), and the chosen feature vectors were used
for the K nearest neighbor (KNN) classifier along with the
10-fold cross-validation (CV) method. The model provided
a  99.22%  accuracy  rate  by  10-fold  CV  and  a  99.71%
accuracy  rate  by  the  hold-out  validation  method  [7].

A two-stage segmentation method for CT images was
proposed  to  diagnose  kidney  stones.  Thefirst  stage  was
employed to extract total kidney volumes, and the second
segmentation  stage  extracted  the  stonepart.  The  five
segmentation  models,  such  as  3D  UNet,  Res  U-Net,
DeepLabV3+,  SegNet,  and  UNETR 5,  were  provided  for
training  the  dataset,  and  a  5-fold  CV  classification
algorithm was applied to classify the input CT images. The
Res U-Net algorithm outperformed other algorithms and
achieved the highest accuracy value of 99.95% [8].

A threshold-based segmentation for detecting stones in
US kidney images was proposed, along with Merriman and
Sethian  methods,  for  smoothening  curves  and  reducing
shrinks  in  an  input  image.  Morphological  analysis  was
performed to determine the stone shape and location with
a detection accuracy value of 96.82% [9]. The 3D U-Nets
model  was  used  for  kidney  stone  segmentation  with
abdominal  non-contrast  CT  images.  The  Deep  3D  dual-
path  networks  were  implemented  using  hydronephrosis
grading  for  automatic  scoring  of  kidney  stones.
Thresholding and region growing were applied to detect
and segment the stones using 3D U-Nets in the renal sinus
region. The 5-fold cross-validation classification algorithm
achieved an accuracy of 91.9% and a sensitivity of 95.9%
using the test dataset [10]. The XRes-net-50 was proposed
for  kidney  stone  detection  with  1799  CT  images.  The
model used raw CT images as input and found the region
of interest for accurate diagnosis. The model achieved an
accuracy of 96.82% for CT images [11].

Kidney  stone  identification  using  SVM and KNN was
proposed  in  US  images.  The  US  images  were  enhanced
and filtered using Median and Gaussian Filter  (GF),  and
images  were  sharpened  by  un-sharp  masking.
Morphological  operations  were  used  to  find  the  final
segmented  image.  PCA  was  used  for  feature  reduction,
and  KNN  and  SVM  classification  algorithms  were
analyzed. Multilayer Perceptron (MLP) and PCA were used
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for  feature  extraction  and  reduction.  Morphological
operations were used to find the final segmented image.
The  segmented  images  were  classified  by  KNN  with  an
89% accuracy rate and SVM with 84% accuracy rate [12].

Many  researchers  have  used  deep  neural  networks
(DNNs)  to  detect  kidney  stones  in  images,  and  Table  1
provides  the  various  techniques  used  for  kidney  stone

detection. However, DNN-based methodology suffers from
convolution operations, and it degrades the performance
of  the  kidney  stone  detection  system  by  using  huge
amounts  of  data  with  high  computational  costs.  In  this
study,  a  conventional-based  Guided  Bilateral  Feature
Detector  (GBFD)  was  proposed  with  less  computational
cost, which gave higher performance in detecting kidney
stones.

Table 1. Comparison of different techniques used for kidney stone detection.

Author/Refs Modality Technique Result

W. Preedanan et al., 2023
[3]

Abdominal x-ray
images Two-stage U- Net pipeline for segmenting urinary stones.

F2 Score =71.28% pixel-wise
F2 score = 69.82%

region-wise
W. Preedanan et al., 2022

[4]
Abdominal x-ray

images
MultiResUnet model trained using GAN-based augmentation technique

for segmenting urinary stone
F1 score = 69.59% pixel-wise

F1 score = 68.14% region-wise

K. Viswanath et al., 2022
[5] Ultrasound images

A preprocessing technique used a Plain Intensity filter. Symlets,
Biorthogonal wavelet sub-band filters, and Daubechies have been used to
obtain kidney stone features. Extracted features segmented using the RD-

LSS (Reaction-Diffusion - Level Set Segmentation) method.
Accuracy = 98.9%

Islam, M.N et al., 2022 [6] CT images Six machine learning algorithms like EANet, CCT, Swin transformers,
Resnet, VGG16, and Inception v3

Swin Transformers Accuracy =
99.3%, Precision = 98.1%,
Recall = 98.9%, F1Score =
98.5% and AUC= 99.97%

Mehmet Baygin et al.,2022
[7] CT images ExDark19 transfer learning-based classification model

10-fold CV accuracy = 99.22%
and Hold-out validation

accuracy = 99.71%

Elton DC et al., 2022 [8] CT images
Two segmentation stages, coarse segmentation and fine segmentation,

are used for detecting stones. Five state-of-the-art segmentation
algorithms have been considered for training.

Res U-Net = 99.95%

Angshuman Khan et al.,
2022 [9] Ultrasound images Used PCA-based feature extraction method. Accuracy = 96.82%

Cui, Y et al., 2021 [10]
Abdominal Non

Contrast CT (NCCT)
images

3D U-Nets model used for kidney stone segmentation. Deep 3D dual-path
networks were identified for hydronephrosis grading and the detection

and segmentation of stones from the renal sinus region.
Sensitivity = 95.9%

Classification AUC = 0.97

Kadir Yildirim et al., 2021
[11] CT images XResNet-50 model Accuracy = 96.82%

Nithya et al., 2020 [12] Ultrasound images ANN with k-means clustering algorithm Accuracy = 99.61%

Verma et al., 2017 [13] Ultrasound images
Median and Gaussian filters are used to enhance and sharpen an image.

Morphological operations are used for segmented images. PCA is used for
feature reduction. KNN and SVM classifications have been analyzed.

Accuracy of KNN = 89%
Accuracy of SVM = 84%

Fig. (1). Sample images of normal and stone CT images.

Normal Images 

   

Stone Images 
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3. MATERIALS AND METHODS
In  this  research,  the  cyst  had  3,709  images,  normal

had  5,077  images,  the  stone  had  1,377  images,  and  the
tumor had 2,283 images, all combined in the dataset that
had  12,446  CT  images  [14].  In  this  study,  only  the  CT
stone (1,377) and normal (5,077) images were considered
and  tested  to  prove  the  accuracy  of  the  proposed
GBFD+SVM model.  The  sample  images  of  CT  stone  and
Normal are shown in Fig. (1).

3.1. Guided Bilateral Feature Detectors
SIFT is the scale-invariant feature and was applied for

pattern matching and recognizing an object  in an image
[15]. The robustness of the SIFT features was also applied
in  Magnetic  Resonance  Imaging  (MRI)  [16],  remote
sensing  images  [17],  and  so  on.

The  SIFT  feature  extractor  smoothens  the  given
images  using  a  GF  and  it  produces  false  edges  when
blurring  the  given  image.  The  use  of  a  Guided  Bilateral
Filter (GBF) in smoothening an image preserves the edges
by  using  the  guide  weight  along  with  the  spatial  and
photometric  weight  of  the  Bilateral  Filter  (BF)  but  does
not  undergo  gradient  reversal  artifacts  [18].  The  halo
artifacts found in the GF produce false pattern matching
on the images, which decreases the quality of the image.
The halo artifact is a common problem in CT images, and
it  has  to  be  addressed.  Thus,  reducing  halo  artifacts
during  the  preprocessing  step  is  important  for  finding
good feature matching. Hence, a GBF was considered to
reduce the halo artifacts and increase the performance of
the feature detector.

Fig.  (2)  illustrates  the  flow  diagram  of  the  proposed
GBFD features and classification with the SVM model. The
unenhanced input CT image was smoothed using GBF to
reduce  the  noise  and  enhance  that  image  for  further
processing.  The  smoothed  CT  image  was  given  to  the
GBFD detector to extract features, and the descriptor was
generated.  These  GBFD  features  were  provided  to  the
SVM  for  training  and  testing  the  dataset  images.

The proposed GBFD feature detector consisted of four
stages,  the  same  as  the  SIFT  method,  to  achieve  better
feature  extraction  and  descriptor  generation  in  order  to
classify the given images.

GF and BF [19,  20]  are commonly used for  smoothe-
ning an input image with an effort to increase the visual
quality of the degraded image and also reduce the noise. A
Guided Bilateral filter (GBF) preserves the edges similar
to the BF and GF but does not undergo gradient reversal
artifacts. In the GB filter, the guide weight is added along
with the spatial weight and photometric weight of the BF.
The  guide  weight  gives  more  interesting  information  on
the relationship between pixels  than spatial  weight.  Fig.
(3) shows the various filtered outputs for the normal and
stone  class  CT images.  The  quality  of  the  filtered  image
was measured with the common evaluating metric, such as
the Peak Signal  to  Noise Ratio  (PSNR) value.  The PSNR
value  of  the  GF  output  was  35.95,  the  BF  output  was

36.67,  and  the  GBF  output  was  37.89.  The  PSNR  value
was  high,  which  means  a  good  quality  image,  and  GBF
produced  a  higher  PSNR value  than  GF and  BF.  Hence,
GBF was considered for this study. Feature extraction was
the next step to extract correct features for classifying the
given image, and GBF Detector was proposed.

Fig.  (2).  Flow  diagram  of  proposed  GBFD  features  with  SVM
model.

The proposed GBFD consisted of four stages, as in the
SIFT feature detector, to achieve good feature extraction
in CT images. Each stage of a GBFD is explained below.
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Fig. (3). Filtered output images of normal and stone CT images.

3.1.1.  Stage  1:  Construction  of  Guided  Bilateral
Scale Space

The construction of the GB scale space (Eq. 1) for an
input image (Iv) of size M×N is defined as,

(1)

where  the  size  of  Ω  is  the  part  width  of  the  GBF,  x
represents the pixel values of an image, B(x) denotes the
BF output, v is the neighborhood of the center pixel, and
wx is the normalization factor and is computed using Eq.
(2).

(2)

where the scale space of a CT image as a function of
B(x,σd) is,

For  various  scales,  B(x,  kσd)  and  B(x,  k2σd)  are
considered  similar  to  the  SIFT  algorithm  with  scaling
factor  k,  σd  to  Gaussian  shape  parameter  in  space,  and
Fig. (4) represents the different scaling of GB construction

for an input image. In Eq. (3), Gσd
 and Gσr

 are the spatial
weight and range weight, respectively,

(3)

where  d(x,v)  represents  the  Euclidean  distance  of  x
and  v,  δ(x,v)  represents  the  intensity  difference.  G
represents the guide image weight, and φ represents the
photometric noise model.

Laplacian-of-Guided  Bilateral  (LoGB)  has  been
computed using Eq. (4) by convolving the Laplacian filter
L(x) with each Guided Bilateral image GB(x,σd)

(4)

Fig. (5) illustrates the output images of LoGB for each
GB(x,σd). Maxima or minima of the LoGB pyramid is given
an  extrema  point.  Second-order  Taylor  series  expansion
provides a better extrema location to localize the feature
point.

3.1.2. Stage 2: Feature Point Localization
Taylor series in the scale space LoGB(x,σd) eliminates

the less contrast and badly localized interest points. The
extrema  point  of  less  than  0.03  values  was  eliminated
because  it  had  an  unstable  extrema  point.  The  edge-
matching  feature  points  were  eliminated  by  using  the
Hessian  matrix.
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1
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Fig. (4). Guided Bilateral Scale Space construction of different scale value B(x, kσd) and B(x, k2σd) for input CT image.

Fig. (5). Laplacian-of-Guided Bilateral (LoGB) for each Guided Bilateral Filtered input CT image.

3.1.3.  Stage  3:  Assignment  of  Magnitude  and
Orientation

The  assignment  of  gradient  magnitude  m(x,y)  and
orientation  Ɵ(x,y)  for  each  Guided  Bilateral  smoothed
image  LoGB(x,σd)  were  computed  using  Eqs.  (5  and  6),
respectively.  The  orientation  and  magnitude  were
assigned  for  each  feature  point.

(5)

(6)

The  above  equation  computes  the  scale,  orientation,
and location for each feature point in CT images.

3.1.4. Stage 4: Descriptor Generation
In the last step, the descriptors were generated by the

computation of 16×16 neighborhoods of the pixel. At each
feature  point  of  the  neighborhood,  the  gradient
magnitudes and orientations were computed and weighted
by Gaussian. The orientation histograms were created for
each subregion of size 4×4 with 8 orientation bins. Finally,
a  vector  had 4× 4× 8=128 elements.  Fig.  (6)  shows the
GBFD features for the input stone CT image.

GBFD features generated from the above stages were
used  for  the  SVM  model  to  classify  as  normal  or  stone
class.

3.2.  Detection  of  Kidney  Diseases  using  Proposed
GBFD Features with SVM

SVM  [21]  is  a  classification  mechanism  with  a
minimum  error  rate  and  generalization.  The  GBFD
features were used with SVM to classify the given images
as kidney stone images or not. SVM separated the given
data with a decision plane to decide the boundary between
the two classes. SVM used training samples to construct

𝑚(𝑥, 𝑦) = √((𝐿𝑜𝐺𝐵(𝑥 + 1, 𝑦) − 𝐿𝑜𝐺𝐵(𝑥 − 1, 𝑦))
2
+ (𝐿𝑜𝐺𝐵(𝑥, 𝑦 + 1) − 𝐿𝑜𝐺𝐵(𝑥, 𝑦 − 1))2

𝜃(𝑥, 𝑦) = tan−1((𝐿𝑜𝐺𝐵(𝑥, 𝑦 + 1) − 𝐿𝑜𝐺𝐵(𝑥, 𝑦 − 1))

/(𝐿𝑜𝐺𝐵(𝑥 + 1, 𝑦) − 𝐿𝑜𝐺𝐵(𝑥 − 1, 𝑦)))     



Automatic Kidney Stone Detection System Using Guided Bilateral Feature 7

Fig. (6). GBFD features from stone CT input image.

the appropriate margin hyperplane and was largely used
in  non-linear  regression  and  pattern  classification
challenges for better results. The normal and stone kidney
CT  images  were  trained  using  the  kernel  type  of  radial
basis function of SVM.

3.2.1. Evaluation of Proposed GBFD
The  evaluation  of  the  kidney  disease  detection  and

classification was carried out on an Intel Core 5Y10C PC,
4 GB RAM, and Windows 10 for the CT images dataset, as
presented  in  Fig.  (2).  Accuracy  (Acc),  Precision  (Pre),
Recall  (Rec),  and  F1-Score  (F1)  were  considered  as  the
performance  metrics  by  comparing  the  proposed  GBFD
features with state-of-art methods.

True  positive  (TP),  False  positive  (FP),  True  negative
(TN),  and  False  negative  (FN)  samples  were  measured  to
find the Acc, Pre, Rec, and F1 values. The recall measured
the model's ability to find sick patients with the disease in
a given dataset of images. Recall defined the ratio of the
number of TP and the number of TP plus the number of FN,
which was calculated using Eq. (7).

(7)

Producing  high  Rec  is  trivial  in  the  medical  disease
diagnosis field. Pre are predicted samples that are really
positive. Pre defines the ratio of the number of TP and the
number of TP plus the number of FP. High Pre is preferred
in  the  medical  disease  diagnosis  field  and  is  calculated
using Eq. (8).

(8)

Acc defines the ratio of the correctly classified samples
to  the  total  samples  considered  for  evaluation,  and  the
formula  is  defined  using  Eq.  (9).  The  maximum value  of
accuracy is 1, and the least is 0.

(9)

F1  value  is  a  more  comprehensive  evaluation  metric
that  unites  precision  and  recall.  F1  value  is  the  formula
defined by using Eq. (10).

(10)

4. RESULTS AND DISCUSSION
The  most  effective  conventional  feature  detectors,

such as SIFT, SURF, and PCA with SVM, were analyzed in
this study, using the proposed GBFD+SVM for qualitative
experimental analysis. In addition, four machine learning
models, EANet, Inception v3, VGG16, and Resnet50, were
considered for the performance comparison analysis.

The  results  of  the  SIFT+SVM,  SURF+SVM,  PCA+
KNN,  EANet,  Inception  v3,  VGG16,  Resnet50,  and
Proposed GBFD+SVM were evaluated by calculating the
performance metrics like Acc, Pre, Rec, and F1 values for
the dataset images [14]. During the SVM training phase,
826 CT stone images and 3046 CT normal kidney images
were  considered  in  terms of  a  60:40  ratio.  For  the  SVM
testing phase, 551 CT stone images and 2031 CT normal
kidney  images  were  considered.  The  extracted  GBFD
features were decided as an input to the SVM classifier.

In  the  SIFT+SVM  training  period,  SIFT  features  with
112 dimensions were extracted from CT kidney images by
4X4  grids  with  7  orientation  bins.  The  extracted  SIFT
features were labeled and trained with SVM as normal or
stone class. During the testing period, the test samples of
SIFT features were applied to SVM in order to categorize
the given sample as a stone or normal class.

Furthermore,  64-dimensional  SURF  features  of  a  4X4
grid with 4 orientation bins were constructed and given as
input  to  the  SVM  classifier  for  the  training  and  testing
phase. Finally, SVM classified the given image as normal or
stone class. SURF gave higher accuracy than SIFT by 0.6%
and was also faster than SIFT.

𝑹𝒆𝒄 = 
𝑻𝑷

𝑻𝑷+𝑭𝑵

 𝑷𝒓𝒆 = 
𝑻𝑷

𝑻𝑷+𝑭𝑷
 

𝑨𝒄𝒄 = 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
× 𝟏𝟎𝟎      

𝑭𝟏 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
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Table 2. Performance comparison of proposed GBFD+SVM.

Methodology Acc (%) Pre Rec F1

SIFT+SVM 86.7 0.856 0.735 0.759
SURF+SVM 87.3 0.876 0.795 0.799
PCA+KNN 89 0.876 0.795 0.709

EANet 77.2 0.896 0.848 0.871
Inception v3 61.60 0.584 0.898 0.708

VGG16 98.20 0.985 0.973 0.979
Resnet50 73.80 0.77 0.79 0.78

Proposed GBFD+SVM 98.56 0.989 0.992 0.990

Table  2  summarizes  the  performance  of  SIFT+SVM,
SURF+SVM,  PCA+KNN,  EANet,  Inception  v3,  VGG16,
Resnet50  and  Proposed  GBFD+SVM  considered  in  this
study.  From  Table  2,  the  InceptionV3  model  performed
less  with  an  Acc  value  of  61.60%.  Resnet  50  and EANet
provide moderate performance Acc values of 73.80% and
77.02%,  respectively.  VGG16  provides  an  Acc  value  of
98.20%, which is higher than SIFT+SVM and SURF+SVM
Acc  values  of  86.7%  and  87.3%,  respectively.  The
proposed  GBFD+SVM outperforms  all  the  other  models'
accuracy  by  extracting  the  correct  features  to  diagnose
the  presence  or  absence  of  kidney  stones  in  the  input
images.

The  Proposed  GBFD+SVM  provided  reasonable  Pre
and  Rec  values  of  0.989  and  0.992,  respectively,  by
detecting  kidney  stone  images.  Higher  Rec  denoted  the
lowest possibility of miscategorizing the normal and stone
class  images.  Figs.  (7  and  8)  show  the  systematic
performance  analysis  of  SIFT+SVM,  SURF+SVM,

PCA+KNN,  EANet,  Inception  v3,  VGG16,  and  Resnet50
with  proposed  GBFD+SVM  for  CT  normal  and  stone
dataset images. The comparative analysis shows that the
proposed  GBFD+SVM  provides  higher  Pre,  Rec,  and  F1
scores than SIFT+SVM, SURF+SVM, PCA+KNN, EANet,
Inception v3, VGG16, and Resnet50 models by extracting
stable features for  detecting kidney disease in the given
image.

Fig.  (8)  shows  the  confusion  matrix  of  the  proposed
GBFD+SVM  for  test  dataset  images.  The  actual  normal
images of 2031 and stone images of 551 were considered
for  testing  the  SVM  with  proposed  GBFD  features.  The
2010 kidney normal images were appropriately predicted
(TP), and 16 stone images were in normal class (FN). The
model  also  misclassified  21  normal  images  (FP)  and  535
stone  images  (TN)  to  the  kidney  stone  class.  Hence,
evaluating these metric values is a necessary criterion for
measuring the proposed GBFD+SVM performance.

Fig. (7). Performance comparison of proposed GBFD+SVM for CT normal images.
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Fig. (8). Confusion Matrix of proposed GBFD+SVM for the test dataset.

Pre  measures  the  rate  of  predicting  kidney  stones
while  recall  gives  the  accurate  prediction  of  positive
values  correctly,  and  the  F1  score  provides  average
harmonic  values  of  Pre  and  Rec.  The  proposed
GBFD+SVM model produced 98.56% Acc rate, 98.9% Pre
rate, 99.2% Rec rate, and 99% F1 rate using 2582 test CT
images.

CONCLUSION
This  study  focused  on  automatic  kidney  stone

detection  using  GBFD  features  and  presented  SVM  for
classification. The use of a GB filter preserves the edges
while  smoothening  an  image  and  reducing  the  halo
artifacts.  The  features  extracted  by  GBFD  showed
robustness to noise compared to GF and BF. The proposed
GBFD+SVM  model  performed  considerably  well  in
relation to Acc, Rec, Pre, and F1 values. The experimental
result of the proposed GBFD+SVM was analyzed with six
machine learning algorithms like SIFT+SVM, SURF+SVM,
PCA+KNN, EANet, Inception v3, VGG16, and Resnet50 to
prove  the  effectiveness  for  detecting  and  diagnosing
kidney  stone  in  CT  images.

Furthermore,  the  confusion  matrix  obtained  by  the
proposed  GBFD+SVM  was  analyzed  in  terms  of
performance  metrics  of  Acc,  Rec,  Pre,  and  F1  values  to
classify  normal  and  stone  classes.  The  systematic
experiment  results  certainly  showed  that  the  proposed
GBFD+SVM achieved a higher accuracy of 98.56%, which
was  comparably  the  same  as  the  performance  of  other
DNN models with less computation cost. In the future, to
develop different disease detection systems, the proposed
GBFD+SVM can be used for different imaging techniques.
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