
The Open Public Health Journal ISSN: 1874-9445
DOI: 10.2174/0118749445338097240923063441, 2024, 17, e18749445338097 1

RESEARCH ARTICLE OPEN ACCESS

VGG-16 based Deep Learning Approach for
Cephalometric Landmark Detection

Pranav Mehra1, Neeraja R1, Jani Anbarasi L1, Vinayakumar Ravi2,* and Alanoud Al Mazroa3

1School of Computer Science and Engineering, Vellore Institute of Technology, India
2Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
3Department  of  Information  Systems,  College  of  Computer  and  Information  Sciences,  Princess  Nourah  bint
Abdulrahman  University  (PNU),  P.O.  Box  84428,  Riyadh  11671,  Saudi  Arabia

Abstract:
Aims: The aim of this research work is to compare the accuracy and precision of manual landmark identification
versus automated methods using deep learning neural networks.

Background:  Cephalometric  landmark  detection  is  a  critical  task  in  orthodontics  and  maxillofacial  surgery  and
accurate identification of landmarks is essential for treatment planning and precise diagnosis outcomes. It entails
locating particular anatomical landmarks on lateral cephalometric radiographs of the skull that can be utilised to
evaluate the relationships between the skeleton and the teeth as well as the soft tissue profiles. Many software tools
and landmark identification approaches have been implemented over time to increase the precision and dependability
of cephalometric analysis.

Objective: The primary objective of this research is to evaluate the effectiveness of an automated deep learning-
based VGG-16 algorithm for cephalometric landmark detection and to compare its performance against traditional
manual identification methods in terms of accuracy and precision.

Methods: The study employs a VGG16 transfer learning model on a dataset of skull X-ray images from the IEEE 2015
ISBI  Challenge  to  automatically  identify  19  cephalometric  landmarks  on  lateral  cephalometric  radiographs.  The
model  is  fine-tuned  to  predict  the  precise  XY  coordinates  of  these  landmarks  enhancing  the  accuracy  of
cephalometric  analysis  by  minimizing  manual  intervention  and  improving  detection  consistency.

Results:  The  experimental  findings  indicate  that  the  presented  cephalometric  landmark  detection  system  has
attained Successful Detection Rates (SDR) of 26.84%, 41.57%, 59.89% and 94.42% in the 2, 2.5, 3 and 4mm precision
range respectively and a Mean Radial Error (MRE) of 2.67mm.

Conclusion: This paper has presented an approach for cephalometric landmark detection using the VGG-16 model a
widely used deep learning architecture in computer vision. Through the experiments it is shown that the VGG-16
model can achieve state-of-the-art performance on the task of cephalometric landmark detection. The results have
demonstrated that the VGG-16 model can automatically extract relevant features from cephalometric images allowing
it  to  accurately  detect  anatomical  landmarks.  It  is  also  shown that  fine-tuning  the  pre-trained VGG-16 model  on
cephalometric  data  can  improve  its  performance  on  this  task.  The  suggested  technique  may  enhance  the
effectiveness  and  precision  of  cephalometric  landmark  detection  and  facilitate  clinical  decision-making  in
orthodontics  and  maxillofacial  surgery.
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1. INTRODUCTION
Cephalometric landmark detection is an important tool

used in dentistry and orthodontics for treatment planning
and  precise  diagnosis  outcomes.  The  process  involves
identifying  specific  anatomical  landmarks  on  lateral
cephalometric radiographs of the skull, which can be used
to assess the connections between the skeletal structure,
teeth,  and  soft  tissue  profiles.  Many  software  tools  and
landmark  identification  approaches  have  been  imple-
mented  over  time  to  increase  the  precision  and
dependability  of  cephalometric  analysis.  The  findings  of
this study will offer vital knowledge about the advantages
and drawbacks of various landmark detection techniques
and aid in determining the most dependable and effective
tools  for  cephalometric  analysis  in  clinical  settings.  This
research  has  an  opportunity  to  potentially  result  in
enhanced  diagnostic  and  treatment  planning,  as  well  as
improved  treatment  results  for  patients  undergoing
orthodontic  and  dental  procedures.  The  field  of
cephalometric  landmark  detection  has  seen  significant
advancements with deep learning architectures in recent
years.

In clinical practice, orthodontists often manually trace
landmarks,  a  method  that  is  both  time-consuming  and
prone  to  inconsistencies,  leading  to  unreliable  results.
Concerns have been raised about the significant variability
between  different  observers  and  even  within  the  same
observer  due  to  differences  in  training  and  experience.
Given  that  accurate  landmark  estimation  is  crucial  for
pathology  identification  and  treatment,  manual  cepha-
lometric analysis can lead to serious consequences if done
poorly.  Therefore,  there  is  a  strong  need  for  fully
automated  and  reliable  computerized  systems  that  can
accurately  detect  cephalometric  landmarks,  perform
necessary  measurements,  and  assess  anatomical  abnor-
malities efficiently.

This  paper  is  organized  as:  Section  II  discusses  the
resulted  work  and  Section  III  discusses  the  proposed
methodology  for  cephalometric  landmark  analysis.  The
dataset description, experimental setup, hyperparameter
tuning,  evaluation  metrics,  result  analysis  and  the
comparison with the state-of-art methods are discussed in
section IV. The conclusion of the research work is detailed
in section V.

2. RELATED WORK
Several  studies  have  shown  the  effectiveness  of

convolution based neural  networks (CNN) in automating
the landmark identification process from cephalograms. A
deep learning framework by Nishimoto et al. [1] to create
cephalometric  personal  computer-based  landmark
detection algorithm. Lee et  al.  [2]  proposed a landmark-
dependent  multi-scale  patch-based  method  for  landmark
identification.  A  deep  learning-based  technique  for
automatic  landmark  localisation  in  medical  images  was
put out by Noothout et al. [3]. Zeng et al. [4] developed a
cascaded  convolutional  network-based  method  for
cephalometric landmark detection. Other notable studies
in this area include those by Song et al. [5], Lee et al. [6],

Kim et al. [7], Qian et al. [8], Oh et al. [9], Kochhar et al.
[10],  Seo  et  al.  [11],  Arik  et  al.  [12],  Lee  et  al.  [13],
Lindner and Cootes [14], Lachinov et al. [15], Grau et al.
[16],  Mosleh  et  al.  [17],  and  Pouyan  and  Farshbaf  [18]
utilised  various  artificial  intelligence  techniques  to
efficiently  identify  landmarks.

Ciesielski  et  al.  [19]  proposed  a  technique  for
identifying  landmarks  in  cephalometric  X-rays  by
employing  genetic  programming.  Saad  et  al.  [20]
described a method for automatic cephalometric analysis
that  uses  dynamic  appearance  models  and  simulated
annealing.  Rakosi  et  al.  [21]  suggested  that  a  landmark
error of 2 mm is tolerable when identifying cephalometric
landmarks.  Forsyth  et  al.  [22]  claimed  that  a  1  mm
precision is ideal for cephalometric landmark detection. A
landmark  detection  technique  for  cephalometric
radiographs  utilising  pulse  linked  neural  networks  was
proposed by Innes et al. [23]. Vucinic et al. [24] developed
an automatic landmarking system for cephalograms using
active  appearance  models.  Kang  et  al.  [25]  proposed  an
automatic 3D cephalometric annotation system using 3D
convolutional  neural  networks.  By  extracting  features
from the skull's symmetry, Neelapu et al. [26] established
an automatic localization approach for 3D cephalometric
landmarks on CBCT images. Codari et al. [27] proposed a
computer-aided  cephalometric  landmark  annotation
method based on a point  distribution model  that  utilizes
both  shape  and  appearance  information  for  accurate
landmark  localization  on  CBCT  data.  Wang  et  al.  [28]
presented  a  multiresolution  decision  tree  regression
voting  method  for  the  automatic  analysis  of  lateral
cephalograms, where a decision tree structure is used to
classify landmarks at different levels of detail for accurate
detection.

Hutton et al. [29] evaluated the efficacy of active shape
models  in  automatically  identifying  cephalometric
landmarks.  The  models  were  trained  using  manually
annotated  landmarks  and  then  tested  on  a  collection  of
unknown landmarks. Vandaele et al. [30] developed a tree-
based  approach  for  automatic  cephalometric  landmark
detection. Support vector machines (SVMs) were used by
Chakrabartty et al.  [31] to offer a reliable cephalometric
landmark  recognition  approach.  The  SVM  classifier  was
trained  on  a  set  of  manually  annotated  landmarks  and
evaluated on a set of unknown landmarks. Romaniuk et al.
[32]  proposed  a  statistical  localization  model  for
landmarks,  which  includes  both  linear  and  non-linear
components.  The  models  were  tested  using  a  series  of
unknown  landmark  processing  approaches  after  being
trained  on  a  set  of  annotated  landmarks.  Lindner  et  al.
[33]  introduced  a  completely  automated  system  that
accurately identifies and analyses cephalometric features
in lateral cephalograms. The system uses a combination of
deep  learning  and  image  processing  methods  to  detect
these landmarks.

Juneja et al. [34] provided a comprehensive review of
various  cephalometric  landmark  detection  techniques,
including deep learning-based methods, traditional image
processing techniques, and hybrid methods that combine
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both approaches. Neeraja et al. [35] conducted a thorough
examination and comparison of various AI techniques used
to  automate  the  recognition  of  cephalometric  landmarks
from  X-ray  images.  According  to  Shahidi  et  al.  [36],
manual annotation carried out by a human expert was less
accurate  than  computerised  automatic  detection  of
cephalometric  landmarks.  The  results  showed  that  the
automated  method  was  highly  accurate  and  reliable  for
landmark  identification.  To  identify  landmarks  on
cephalometric radiographs, Kafieh et al.  [37] proposed a
modified  active  shape  model  with  sub-image  matching.
The  effectiveness  of  cellular  neural  networks  for
recognising  cephalometric  landmarks  was  assessed  by
Leonardi  et  al.  [38].  Hwang  et  al.  [39]  developed  an
automated cephalometric landmark identification system
using  deep  learning  techniques,  which  outperformed
human  experts  in  terms  of  accuracy.  A  Random  Forest
(RF) based likelihood model was presented by Mirzaalian
et  al.  [40]  to  enhance  the  performance  of  pictorial
structures  in  cephalometric  landmark  detection.  An
adversarial  encoder-decoder  network  was  suggested  by
Dai  et  al.  [41]  to  detect  landmarks  from  cephalograms.
The  CephXNet  architecture  presented  by  Neeraja  et  al.
[42]  employed  a  customised  CNN  framework  that
integrates a Squeeze-and-excitation (SE) attention block to
automatically predict 19 landmark coordinates. Gangani et
al. [44, 45] analysed chronic kidney disease and diabetics
using  explainable  AI  in  machine  learning  based
techniques.

3. METHODS
The Visual Geometry Group (VGG) at the University of

Oxford  created  the  deep  convolutional  neural  network
architecture  known  as  the  VGG  transfer  learning  model
(VGGNet),  as  shown  in  Fig.  (1a).  The  architecture  was
first presented in the 2014 ILSVRC (ImageNet Large Scale
Visual  Recognition  Challenge)  and  has  subsequently
gained popularity and influence for a range of  computer
vision challenges. A number of convolutional and pooling
layers precede fully connected layers that result in good
prediction accuracy in the VGG model. The pooling layers
are of 2x2 filters,  and the convolutional layers are made
up  of  3x3  filters  with  stride  1.  As  the  network  becomes
more  complicated,  the  number  of  filters  in  each  layer
increases,  creating  a  highly  expressive  and  complex
feature representation. The pre-trained VGG16 is used as
a feature extractor in the model to create a convolutional
neural  network  (CNN)  utilising  transfer  learning.  The
design  has  a  dense  layer  that  receives  the  output  from
VGG16 and a final output layer with a sigmoid activation
function  that  outputs  the  anticipated  bounding  box
coordinates. With a test size of 10%, the data are divided
into  training  and  testing  sets.  The  final  step  is  to  make
predictions  on  a  set  of  test  images  and  compute  the
Euclidean distance between the actual values provided by
doctors  and  the  predicted  points.  The  summary  of  the
trained  VGG16  models  is  shown  in  Fig.  (1b)  with
17,936,548  trained  parameters.

Fig. (1a). Proposed VGG-16 model architecture [43].
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Fig. (1b). Summary of trained model for cephalometric landmark prediction.
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The  VGG-16  architecture,  traditionally  designed  for
image classification, has been adapted to predict bounding
boxes  for  cephalometric  landmark  detection.  Key  modi-
fications  include  flattening  the  output  feature  map  after
the final MaxPooling layer and passing it through a series
of Dense layers, culminating in a final Dense layer with 4
units  to  output  bounding box coordinates  (x_min,  y_min,
x_max,  y_max).  This  adaptation  shifts  the  model's  focus
from  class  prediction  to  spatial  localization,  which  is
essential  for  precise  cephalometric  analysis  in  medical
imaging.

4. RESULTS AND DISCUSSION

4.1. Dataset
The dataset used for the experiment is obtained from

the 2015 ISBI IEEE challenge in automatically identifying
the  19  landmarks.  The  dataset  comprises  400  skull
radiographs. The evaluation is conducted by utilising 360
images  for  training  purposes  and  40  images  for  testing

purposes.  The  images  were  initially  at  a  resolution  of
1935×2400  pixels;  however,  the  dimensions  were  later
reduced  to  224×224  pixels  during  the  implementation
process. The dataset included cephalometric X-ray images
along with the 19 landmark coordinates and are shown in
Fig. (2).

4.2. Experimental Setup
The proposed method was implemented with Anaconda

(conda version: 23.1.0) as the installation system, Spyder
3.516 serving as the integrated development environment
and Python 3.9 (python version: 3.9.13.final.0) was used as
the programming language, TensorFlow was used to run
the  Python  deep  learning  library  Keras  (version  2.11.0).
OpenCV version 4.7.0, NumPy version 1.21.5, Matplotlib
version 3.5.2, and Sklearn version 1.0.2 are the relevant
libraries.  The  experiment  uses  an  Intel(R)  Core(TM)
i7-8565U  Processor  running  at  1.80  GHz  and  1.99  GHz
with  8  GB of  memory  is  offered (7.79 GB usable).  Adam
optimizer was used for training the model.

Fig. (2). Location of 19 landmarks provided by ISBI challenge [34].
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Fig. (3). Training and validation loss and accuracy vs number of epochs.

4.3. Hyper-parameter Tuning
The  system  was  finetuned  by  adjusting  the  three

hyperparameters: batch size, learning rate, and number of
epochs.  The  model  underwent  training  for  a  total  of  32
epochs,  with  each  epoch  included  10  iterations.  The
experiment utilised a batch size of 32 and a learning rate
of  1e-4.  The  batch  size,  which  specifies  the  number  of
samples analysed before updating the internal parameters
of  the  model,  was  configured  to  32.  A  batch  size  of  32
achieves a trade-off between efficient training and stable
convergence,  enabling  the  model  to  successfully  learn
from the data without overloading memory resources. The
learning  rate,  an  essential  hyperparameter  that  controls
the  size  of  each  step  taken  during  iteration  towards  the
minimum of the loss function, was assigned a value of 1e-4
(0.0001).  Using a lower learning rate facilitates a better
convergence of the model and prevents it from exceeding
the  optimal  parameters.  This  is  particularly  important
when finetuning a pre-trained model to reflect the specific
attributes  of  cephalometric  radiographs.  The  model
completed  32  epochs  of  training,  which  involved
processing the whole training dataset through the neural
network  in  both  forward  and  backward  directions.  The
number  of  epochs  was  selected  to  strike  a  balance
between  allowing  the  model  to  learn  from  the  data
adequately  and  avoiding  overfitting,  which  occurs  when
the model becomes overly specialised to the training data
and  performs  poorly  on  unseen  images.  The  training
dataset was partitioned into smaller subsets (batches) that
the model handled progressively. Each epoch consisted of
10  iterations.  This  strategy  reduces  the  computational
burden  and  allows  for  several  changes  to  the  model
weights  every  epoch,  hence  improving  the  learning
process.

4.4. Custom Model Training and Validation
Fig.  (3)  displays  the  mean  squared  error  loss  on  the

training set vs the number of epochs used for training. The
ADAM  optimizer  was  utilised  to  train  the  model  for  30
epochs,  with  a  learning  rate  of  0.01,  enabling  improved
and faster convergence. The accuracy and loss curves are

assessed for each fold of the training and validation sets.
The training loss curve has a decreasing tendency as the
number of training epochs grows, while a corresponding
trend in the opposite direction is observed for the training
accuracy.  The  suggested  model  helps  maintain  a  consis-
tent input distribution across different layers and reduces
the likelihood of overfitting.

4.5. Evaluation Metrics
To calculate the number of pixels equivalent to 2 mm,

we  can  divide  2mm2  by  the  area  of  one  pixel,  2  mm2  /
0.573042 mm2  = 3.486. Therefore, 2 mm corresponds to
approximately 3.486 pixels.  Hence,  2mm = 3.486 pixels,
2.5mm = 4.35 pixels, 3mm = 5.229 pixels, 4mm = 6.972
pixels.  To  normalize  the  Euclidean  distance  since  each
image is resized, every Euclidean distance value obtained
is divided by the normalization factor calculated (11.811).
This factor is obtained as 300 pixels per inch translates to
11.811  pixels  per  mm.  After  dividing  the  distance  by
11.811, if the final Euclidean distance lies within the pixel
values  determined  above,  it  is  accounted  as  successful
detection of  the landmark,  and this  adds up to the SDR.
The MRE is calculated as the Euclidean distance between
the  detected  landmark  coordinates  and  the  actual
landmark coordinates. Therefore, the calculated Euclidean
distances  are  combined  and  averaged  to  get  the  Mean
Radial Error (MRE) for landmark ‘i’, as depicted in Eq. (1):

(1)

where the number of images is ‘M’. The SDR was used
for  assessing  the  effectiveness  of  the  landmark
identification  algorithms.  It  is  the  percentage  of  the
landmarks  that  were  successfully  determined  within  2,
2.5, 3, and 4mm detection ranges as given in Eqs. (2 and
3).

(2)

(3)

𝑀𝑅𝐸 =  
∑ 𝑅𝑀

𝑗=1 𝐸𝑖
𝑛

𝑀
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1
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where Di,j denotes the Euclidean distance between the
jth  predicted  values  of  landmarks  and  ith  image's  ground
truth values. Euclidean distance between two points in 2-D
is  defined  as  shown  in  Eq.  (4).  Mean  Squared  Error  is
defined in Eq. (5).

(4)

(5)

4.6. Landmark Prediction Result Analysis
The  proposed  framework  achieved  an  average  SDR

rate  of  26.84%,  41.57%,  59.89%  and  94.42%  in
2mm,2.5mm,3mm and 4mm precision ranges. The average
Mean  Radial  Error  (MRE)  for  19  landmarks  is  2.67mm.
The prediction results obtained for the 19 landmarks using
VGG-16 architecture are shown in Table 1. The bounding
box generated for the cephalometric landmarks is shown
in Fig. (4). The landmark-wise Successful Detection Rate
(SDR%)  for  all  19  landmarks  in  the  2,  2.5,  3,  and  4mm
ranges are plotted in Fig. (5).

Fig. (4). Bounding box generated are represented with the green box.

Table 1. The prediction results obtained for 19 landmarks using the proposed model.

Landmark MRE
(in mm)

Successful Detection Rate (mm)

2mm 2.5mm 3mm 4mm

1 3.069 18 32 54 90
2 2.695 26 42 62 92
3 2.697 30 48 58 94
4 2.694 28 38 58 98
5 2.715 34 40 58 94
6 2.447 36 52 68 92
7 2.558 26 44 60 96
8 2.523 36 44 62 94
9 2.752 30 42 56 88
10 2.51 30 46 66 96
11 2.849 22 36 58 90
12 2.808 18 32 54 96
13 2.711 20 44 60 94
14 2.784 22 36 56 92
15 2.47 36 52 68 96
16 2.848 20 32 60 94
17 2.501 28 40 60 100
18 2.51 22 44 62 98
19 2.587 28 46 58 100

Average 2.67 26.84 41.57 59.89 94.42
Best 2.447 36 52 68 100

    𝐸𝐷 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

 MSE =   
1

𝑛
∑ (𝑛

𝑖=1 (𝑥𝑖 − �̂�𝑖)2 + (𝑦𝑖 − �̂�𝑖)2)
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Landmark MRE
(in mm)

Successful Detection Rate (mm)

2mm 2.5mm 3mm 4mm

Worst 3.069 18 32 54 88
Median 2.695 28 42 60 94

4.7. Comparison with State-of-the-art Methods
Tables 2 and 3 compare the Successful Detection Rate

(SDR%)  within  2mm,  2.5mm,  3mm  and  4mm  and  Mean
Radial Error (MRE in mm) of various proposed methodo-
logies. A Successful Detection Rate of 84.7% is obtained in
2mm  precision  range  RFRV  by  Lindner  et  al.  [33].
Noothout et al. [3] used a full CNN and achieved 80% SDR
in  2mm  precision  range.  Song  et  al.  [5]  used  a  deep
convolution neural network to achieve 74% of SDR in 2mm
precision  range.  To  improve  the  Successful  Detection
Rate, Qian et al. [8] suggested Multi-head attention neural
network  (CephaNN) attaining  76.32% in  2mm precision.
An  Extremely  Randomized  Forests  algorithm  was  pro-

posed by Vandaele et al. [30] for automatically predicting
the landmark coordinates and obtained an SDR of 77.58%
for 2mm precision. A pictorial  structure-based algorithm
was  investigated  by  Mirzaalian  et  al.  [39],  achieving
62.32%  SDR  for  2mm.  A  pattern-based  detection  algo-
rithm  on  mathematical  morphology  techniques  was
introduced by Grau et al. [16] and obtained Mean Radial
Error of 1.1mm. The Mean Radial Error (MRE) is reduced
to 0.9mm using YOLOv3 by Hwang et al. [38]. Mosleh et
al.  [17]  suggested  an  image  processing  approach  to
automatically  analyse  cephalometric  landmarks  and
achieved  an  MRE  of  0.16mm.  Fig.  (6)  illustrates  the
comparison of SDR and MRE of the proposed model with
various existing methodologies [46].

Fig. (5). Landmark-wise SDR% for all 19 landmarks in the 2, 2.5, 3, 4mm precision ranges.

  

(a) 2mm (b) 2.5mm 

 

 

 

(c) 3mm (d) 4mm 

(Table 1) contd.....
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Fig. (6). SDR% and MRE of the proposed model vs other models.

Table 2. SDR% comparison results of state-of-the-art methods in various precision ranges.

Author/Refs Methodology
Successful Detection Rate (SDR%)

2mm 2.5mm 3mm 4mm

Noothout et al. [3] Fully Convolutional Neural Network (FCNN) 80 90 92.5 95
Song et al. [5] Convolutional Neural Network (CNN) 74 81.3 87.5 94.3
Qian et al. [8] Multi-head attention neural network (CephaNN) 76.32 82.95 97.95 94.63
Arik et al. [12] Convolutional Neural Network (CNN) 67.68 74.16 79.11 84.63

Lindner et al. [14] Random Forest based Regression-Voting in the Constrained Local Model framework (RFRV-
CLM) 73.68 80.21 85.19 91.47

Wang et al. [28] Multiresolution Decision Tree Regression Voting (MDTRV) algorithm 73.37 79.65 84.46 90.67
Vandaele et al. [30] Extremely Randomized Forests 77.58 83.89 88.37 93.21
Lindner et al. [33] Random Forest regression-voting (RFRV) 84.7 89.38 92.62 96.3

Mirzaalian et al. [40] Pictorial structure-based algorithm 62.32 70.42 75.68 84.05

Table 3. Comparison showing Mean Radial Error (MRE in mm) results for various proposed methods.

Author/Refs Methodology MRE (in mm)

Zeng et al. [4] Convolutional Neural Network (CNN) 1.64
Lindner et al. [14] Random Forest based Regression-Voting in the Constrained Local Model framework (RFRV-CLM) 1.67

Grau et al. [16] Pattern detection algorithm based on mathematical morphology techniques 1.1
Mosleh et al. [17] Image processing system 0.16
Innes et al. [23] Pulse Coupled Neural Network (PCNN) 1.68
Wang et al. [28] Multiresolution Decision Tree Regression Voting (MDTRV) 1.69

Shahidi et al. [36] Knowledge-based approach 2.59
Leonardi et al. [38] Cellular Neural Network 0.59
Hwang et al. [39] YOLOv3 0.9

CONCLUSION
This  paper  has  presented  an  approach  to

cephalometric  landmark  detection  using  the  VGG-16
model,  a  widely  used  deep  learning  architecture  in
computer vision. The customised VGG-16 model achieved

satisfactory  performance  in  cephalometric  landmark
detection  compared  to  state-of-the-art  methods.  The
results  have  demonstrated  that  the  VGG-16  model  can
automatically extract relevant features from cephalometric
images,  allowing  it  to  accurately  detect  anatomical
landmarks.  It  has  also  been  shown  that  fine-tuning  the
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pre-trained  VGG-16  model  on  cephalometric  data  can
improve  its  performance  in  this  task.  The  experimental
results  demonstrate  that  the  cephalometric  landmark
detection  system  achieved  a  Successful  Detection  Rate
(SDR%)  of  26.84%,  41.57%,  59.89%,  and  94.42%  within
the  precision  ranges  of  2mm,  2.5mm,  3mm,  and  4mm,
respectively.  Additionally,  the  system  exhibited  a  Mean
Radial  Error  (MRE)  of  2.67mm.  The  proposed  technique
has the potential to improve the accuracy and efficiency of
identifying  cephalometric  landmarks,  as  well  as  aid  in
making clinical decisions in the fields of orthodontics and
maxillofacial surgery.

AUTHORS’ CONTRIBUTION
It  is  hereby  acknowledged  that  all  authors  have

accepted responsibility  for  the manuscript's  content  and
consented  to  its  submission.  They  have  meticulously
reviewed all  results  and  unanimously  approved  the  final
version of the manuscript.

LIST OF ABBREVIATIONS

VGG = Visual Geometry Group
SDR = Successful Detection Rate
MSE = Mean Squared Error
MRE = Mean Radial Error
CNN = Convolutional Neural Networks
CBCT = Cone-beam computed tomography
PPI = Pixels per inch

ETHICS  APPROVAL  AND  CONSENT  TO
PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS
Not applicable.

CONSENT FOR PUBLICATION
Not applicable.

AVAILABILITY OF DATA AND MATERIALS
The  data  supporting  the  findings  of  the  article  is

available  in  the  ResearchGate  at  https://www.research
gate.net/publication/383786603_Data_SW2024,  reference
number  DOI:  10.13140/RG.2.2.28501.84963.

FUNDING
None.

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or

otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES
Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal[1]

computer-based  cephalometric  landmark  detection  with  deep
learning,  using cephalograms on the internet.  J  Craniofac  Surg
2019; 30(1): 91-5.
http://dx.doi.org/10.1097/SCS.0000000000004901  PMID:
30439733
Lee  C,  Tanikawa  C,  Lim  JY,  Yamashiro  T.  Deep  learning  based[2]
cephalometric landmark identification using landmark-dependent
multi-scale patches. arXiv preprint 2019; 2019: 02961.
Noothout  JMH,  De Vos  BD,  Wolterink JM,  et  al.  Deep learning-[3]
based  regression  and  classification  for  automatic  landmark
localization  in  medical  images.  IEEE Trans  Med Imaging 2020;
39(12): 4011-22.
http://dx.doi.org/10.1109/TMI.2020.3009002 PMID: 32746142
Zeng  M,  Yan  Z,  Liu  S,  Zhou  Y,  Qiu  L.  Cascaded  convolutional[4]
networks for automatic cephalometric landmark detection. Med
Image Anal 2021; 68: 101904.
http://dx.doi.org/10.1016/j.media.2020.101904 PMID: 33290934
Song  Y,  Qiao  X,  Iwamoto  Y,  Chen  Y.  Automatic  cephalometric[5]
landmark  detection  on  X-ray  images  using  a  deep-learning
method.  Appl  Sci  (Basel)  2020;  10(7):  2547.
http://dx.doi.org/10.3390/app10072547
Lee JH, Yu HJ, Kim M, Kim JW, Choi J. Automated cephalometric[6]
landmark  detection  with  confidence  regions  using  Bayesian
convolutional  neural  networks.  BMC  Oral  Health  2020;  20(1):
270.
http://dx.doi.org/10.1186/s12903-020-01256-7 PMID: 33028287
Kim H,  Shim E,  Park  J,  Kim YJ,  Lee  U,  Kim Y.  Web-based  fully[7]
automated  cephalometric  analysis  by  deep  learning.  Comput
Methods  Programs  Biomed  2020;  194:  105513.
http://dx.doi.org/10.1016/j.cmpb.2020.105513 PMID: 32403052
Qian J, Luo W, Cheng M, Tao Y, Lin J, Lin H. CephaNN: a multi-[8]
head  attention  network  for  cephalometric  landmark  detection.
IEEE Access 2020; 8: 112633-41.
http://dx.doi.org/10.1109/ACCESS.2020.3002939
Oh K, Oh IS, Le VNT, Lee DW. Deep anatomical context feature[9]
learning  for  cephalometric  landmark  detection.  IEEE  J  Biomed
Health Inform 2021; 25(3): 806-17.
http://dx.doi.org/10.1109/JBHI.2020.3002582 PMID: 32750939
Kochhar  AS,  Nucci  L,  Sidhu  MS,  et  al.  Reliability  and[10]
reproducibility of landmark identification in unilateral cleft lip and
palate  patients:  Digital  lateral  vis-a-vis  CBCT-derived  3D
cephalograms.  J  Clin  Med  2021;  10(3):  535.
http://dx.doi.org/10.3390/jcm10030535 PMID: 33540549
Seo  H,  Hwang J,  Jeong  T,  Shin  J.  Comparison  of  deep  learning[11]
models for cervical  vertebral  maturation stage classification on
lateral cephalometric radiographs. J Clin Med 2021; 10(16): 3591.
http://dx.doi.org/10.3390/jcm10163591 PMID: 34441887
Arik  SÖ,  Ibragimov  B,  Xing  L.  Fully  automated  quantitative[12]
cephalometry using convolutional neural networks. J Med Imaging
(Bellingham) 2017; 4(1): 014501-1.
http://dx.doi.org/10.1117/1.JMI.4.1.014501 PMID: 28097213
Lee H, Park M, Kim J. Cephalometric landmark detection in dental[13]
x-ray  images  using  convolutional  neural  networks.  Medical
imaging  2017:  Computer-aided  diagnosis  2017;  10134:  494-9.
Lindner C, Cootes TF. Fully automatic cephalometric evaluation[14]
using  random  forest  regression-voting.  IEEE  International
Symposium  on  Biomedical  Imaging  2015.
Lachinov D, Getmanskaya A, Turlapov V. Cephalometric landmark[15]
regression with convolutional neural networks on 3D computed
tomography  data.  Pattern  Recognit  Image  Anal  2020;  30(3):
512-22.
http://dx.doi.org/10.1134/S1054661820030165
Grau  V,  Alcañiz  M,  Juan  MC,  Monserrat  C,  Knoll  C.  Automatic[16]
localization of cephalometric landmarks. J Biomed Inform 2001;
34(3): 146-56.
http://dx.doi.org/10.1006/jbin.2001.1014 PMID: 11723697
Mosleh MA, Baba MS, Himazian N. An image processing system[17]
for  cephalometric  analysis  and  measurements.  International
Symposium  on  Information  Technology.  4:  1-8.
http://dx.doi.org/10.1109/ITSIM.2008.4631953

http://dx.doi.org/10.1097/SCS.0000000000004901
http://www.ncbi.nlm.nih.gov/pubmed/30439733
http://dx.doi.org/10.1109/TMI.2020.3009002
http://www.ncbi.nlm.nih.gov/pubmed/32746142
http://dx.doi.org/10.1016/j.media.2020.101904
http://www.ncbi.nlm.nih.gov/pubmed/33290934
http://dx.doi.org/10.3390/app10072547
http://dx.doi.org/10.1186/s12903-020-01256-7
http://www.ncbi.nlm.nih.gov/pubmed/33028287
http://dx.doi.org/10.1016/j.cmpb.2020.105513
http://www.ncbi.nlm.nih.gov/pubmed/32403052
http://dx.doi.org/10.1109/ACCESS.2020.3002939
http://dx.doi.org/10.1109/JBHI.2020.3002582
http://www.ncbi.nlm.nih.gov/pubmed/32750939
http://dx.doi.org/10.3390/jcm10030535
http://www.ncbi.nlm.nih.gov/pubmed/33540549
http://dx.doi.org/10.3390/jcm10163591
http://www.ncbi.nlm.nih.gov/pubmed/34441887
http://dx.doi.org/10.1117/1.JMI.4.1.014501
http://www.ncbi.nlm.nih.gov/pubmed/28097213
http://dx.doi.org/10.1134/S1054661820030165
http://dx.doi.org/10.1006/jbin.2001.1014
http://www.ncbi.nlm.nih.gov/pubmed/11723697
http://dx.doi.org/10.1109/ITSIM.2008.4631953


Deep Learning Approach for Cephalometric Landmark Detection 11

Pouyan  AA,  Farshbaf  M.  Cephalometric  landmarks  localization[18]
based  on  histograms  of  oriented  gradients.  2010  International
Conference on Signal and Image Processing. 1-6.
http://dx.doi.org/10.1109/ICSIP.2010.5697431
Ciesielski V, Innes A, John S, Mamutil J. Genetic programming for[19]
landmark  detection  in  cephalometric  radiology  images.
International Journal of Knowledge based intelligent engineering.
Systems (Basel) 2003; 7(3): 164-71.
Saad  AA,  El-Bialy  A,  Kandil  AH,  Sayed  AA.  Automatic[20]
cephalometric  analysis  using  active  appearance  model  and
simulated annealing. ICGST Int J on Graphics, Vision and Image
Processing. Special Issue on Image Retrieval and Representation
2006; 6: 51-67.
Rakosi T. An atlas of cephalometric radiography. London: Wolfe[21]
Medical Publications 1982.
Forsyth DB, Davis DN. Assessment of an automated cephalometric[22]
analysis system. Eur J Orthod 1996; 18(5): 471-8.
http://dx.doi.org/10.1093/ejo/18.5.471 PMID: 8942096
Innes A, Ciesielski V, Mamutil J, John S. Landmark detection for[23]
cephalometric  radiology  images  using  pulse  coupled  neural
networks.  Proc  Int  Conf  on  Artificial  Intelligence  2002;  2
Vucinić  P,  Trpovski  Z,  Sćepan  I.  Automatic  landmarking  of[24]
cephalograms  using  active  appearance  models.  Eur  J  Orthod
2010; 32(3): 233-41.
http://dx.doi.org/10.1093/ejo/cjp099 PMID: 20203126
Kang  SH,  Jeon  K,  Kim  HJ,  Seo  JK,  Lee  SH.  Automatic  three-[25]
dimensional  cephalometric  annotation  system  using  three-
dimensional convolutional neural networks: A developmental trial.
Comput Methods Biomech Biomed Eng Imaging Vis 2020; 8(2):
210-8.
http://dx.doi.org/10.1080/21681163.2019.1674696
Neelapu  BC,  Kharbanda  OP,  Sardana  V,  et  al.  Automatic[26]
localization  of  three-dimensional  cephalometric  landmarks  on
CBCT  images  by  extracting  symmetry  features  of  the  skull.
Dentomaxillofac  Radiol  2018;  47(2):  20170054.
http://dx.doi.org/10.1259/dmfr.20170054 PMID: 28845693
Codari M, Caffini M, Tartaglia GM, Sforza C, Baselli G. Computer-[27]
aided  cephalometric  landmark  annotation  for  CBCT  data.  Int  J
CARS 2017; 12(1): 113-21.
http://dx.doi.org/10.1007/s11548-016-1453-9 PMID: 27358080
Wang S, Li H, Li J, Zhang Y, Zou B. Automatic analysis of lateral[28]
cephalograms based on multiresolution decision tree regression
voting. J Healthc Eng 2018; (1): 1797502.
http://dx.doi.org/10.1155/2018/1797502 PMID: 30581546
Hutton  T,  Cunningham S,  Hammond  P.  An  evaluation  of  active[29]
shape  models  for  the  automatic  identification  of  cephalometric
landmarks. Eur J Orthod 2000; 22(5): 499-508.
http://dx.doi.org/10.1093/ejo/22.5.499 PMID: 11105406
Vandaele  R,  Marée R.  Automatic  cephalometric  x-ray  landmark[30]
detection challenge 2014: A tree-based algorithm. ISBI 2014.
Chakrabartty  S,  Yagi  M,  Shibata  T,  Cauwenberghs  G.  Robust[31]
cephalometric  landmark  identification  using  support  vector
machines.  International  Conference  on  Multimedia  and  Expo
ICME'03  Proceedings  (Cat  No  03TH8698)  2003;  3:  111-929.
Romaniuk B, Desvignes M, Revenu M, Deshayes MJ. Linear and[32]
non-linear model for statistical localization of landmarks. In 2002.
Int Conf Pattern Recognit 2002; 4: 393-6. [). IEEE.].
Lindner C, Wang CW, Huang CT, Li CH, Chang SW, Cootes TF.[33]

Fully automatic system for accurate localisation and analysis of
cephalometric landmarks in lateral cephalograms. Sci Rep 2016;
6(1): 33581.
http://dx.doi.org/10.1038/srep33581 PMID: 27645567
Juneja  M,  Garg  P,  Kaur  R,  et  al.  A  review  on  cephalometric[34]
landmark  detection  techniques.  Biomed  Signal  Process  Control
2021; 66: 102486.
http://dx.doi.org/10.1016/j.bspc.2021.102486
Neeraja  R,  Anbarasi  LJ.  A  review  on  automatic  cephalometric[35]
landmark  identification  using  artificial  intelligence  techniques.
2021  Fifth  International  Conference  on  I-SMAC  (IoT  in  Social,
Mobile, Analytics and Cloud) (I-SMAC), Palladam, India. 572-7.
Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei SM. Accuracy of[36]
computerized automatic identification of cephalometric landmarks
by  a  designed  software.  Dentomaxillofac  Radiol  2013;  42(1):
20110187-.
http://dx.doi.org/10.1259/dmfr.20110187 PMID: 23236215
Kafieh  R,  Mehri  A,  Sadri  S.  Automatic  landmark  detection  in[37]
cephalometry using a modified active shape model with sub image
matching.  2007  International  Conference  on  Machine  Vision.
73-8.
http://dx.doi.org/10.1109/ICMV.2007.4469276
Leonardi  R,  Giordano  D,  Maiorana  F.  An  evaluation  of  cellular[38]
neural networks for the automatic identification of cephalometric
landmarks on digital images. J Biomed Biotechnol 2009; 2009(1):
717102.
PMID: 19753320
Hwang HW, Park JH, Moon JH, et al. Automated identification of[39]
cephalometric landmarks: Part 2-Might it be better than human?
Angle Orthod 2020; 90(1): 69-76.
http://dx.doi.org/10.2319/022019-129.1 PMID: 31335162
Mirzaalian H, Hamarneh G. Automatic globally-optimal pictorial[40]
structures  with  random  decision  forest  based  likelihoods  for
cephalometric  X-Ray  landmark  detection.  Automatic
Cephalometric  X-Ray  Landmark  Detection  Challenge  2014,  in
conjunction  with  IEEE  International  Symposium  on  Biomedical
Imaging (IEEE ISBI) 2014.
Dai  X,  Zhao  H,  Liu  T,  Cao  D,  Xie  L.  Locating  anatomical[41]
landmarks  on  2D  lateral  cephalograms  through  adversarial
encoder-decoder  networks.  IEEE  Access  2019;  7:  132738-47.
http://dx.doi.org/10.1109/ACCESS.2019.2940623
Neeraja  R,  Jani  Anbarasi  L.  CephXNet:  A  deep  convolutional[42]
squeeze-and-excitation model for landmark prediction on lateral
cephalograms. IEEE Access 2023; 11: 90780-800.
Available from: https://www.geeksforgeeks.org/vgg-16-cnn-model/[43]
Dharmarathne  G.  On  the  diagnosis  of  chronic  kidney  disease[44]
using  a  machine  learning-based  interface  with  explainable
artificial intelligence. Intelligent Systems with Applications 2024;
22(200397): 1-13.
Dharmarathne  G,  Jayasinghe  TN,  Bogahawaththa  M,  Meddage[45]
DPP,  Rathnayake  U.  A  novel  machine  learning  approach  for
diagnosing diabetes with a self-explainable interface. Healthcare
Analytics 2024; 5: 100301.
http://dx.doi.org/10.1016/j.health.2024.100301
Wang CW, Huang CT, Hsieh MC, et al. Evaluation and comparison[46]
of anatomical landmark detection methods for cephalometric X-
ray  images:Agrand  challenge.  IEEE  Trans  Med  Imaging  2015;
34(9): 1890-900.
http://dx.doi.org/10.1109/TMI.2015.2412951 PMID: 25794388

http://dx.doi.org/10.1109/ICSIP.2010.5697431
http://dx.doi.org/10.1093/ejo/18.5.471
http://www.ncbi.nlm.nih.gov/pubmed/8942096
http://dx.doi.org/10.1093/ejo/cjp099
http://www.ncbi.nlm.nih.gov/pubmed/20203126
http://dx.doi.org/10.1080/21681163.2019.1674696
http://dx.doi.org/10.1259/dmfr.20170054
http://www.ncbi.nlm.nih.gov/pubmed/28845693
http://dx.doi.org/10.1007/s11548-016-1453-9
http://www.ncbi.nlm.nih.gov/pubmed/27358080
http://dx.doi.org/10.1155/2018/1797502
http://www.ncbi.nlm.nih.gov/pubmed/30581546
http://dx.doi.org/10.1093/ejo/22.5.499
http://www.ncbi.nlm.nih.gov/pubmed/11105406
http://dx.doi.org/10.1038/srep33581
http://www.ncbi.nlm.nih.gov/pubmed/27645567
http://dx.doi.org/10.1016/j.bspc.2021.102486
http://dx.doi.org/10.1259/dmfr.20110187
http://www.ncbi.nlm.nih.gov/pubmed/23236215
http://dx.doi.org/10.1109/ICMV.2007.4469276
http://www.ncbi.nlm.nih.gov/pubmed/19753320
http://dx.doi.org/10.2319/022019-129.1
http://www.ncbi.nlm.nih.gov/pubmed/31335162
http://dx.doi.org/10.1109/ACCESS.2019.2940623
https://www.geeksforgeeks.org/vgg-16-cnn-model/
http://dx.doi.org/10.1016/j.health.2024.100301
http://dx.doi.org/10.1109/TMI.2015.2412951
http://www.ncbi.nlm.nih.gov/pubmed/25794388

	[1. INTRODUCTION]
	1. INTRODUCTION
	2. RELATED WORK
	3. METHODS
	4. RESULTS AND DISCUSSION
	4.1. Dataset

	4.2. Experimental Setup
	4.3. Hyper-parameter Tuning
	4.4. Custom Model Training and Validation
	4.5. Evaluation Metrics
	4.6. Landmark Prediction Result Analysis
	4.7. Comparison with State-of-the-art Methods

	CONCLUSION
	AUTHORS’ CONTRIBUTION
	LIST OF ABBREVIATIONS
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	HUMAN AND ANIMAL RIGHTS
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES


