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Abstract:
Introduction: The brain is the main organ of the nervous system and serves as the command and control centre for
all bodily functions required to maintain a normal, healthy life. Brain tumours are characterised by the growth of
abnormal cells in the brain, which disrupts healthy cerebral tissue. Early diagnosis and effective treatment require
the timely identification and segmentation of brain tumours. Traditional methods of diagnosing brain tumours include
manually  reviewing MRIs,  which is  a  laborious and error-prone procedure.  Researchers have recently  developed
many novel automated methods for detecting and segmenting brain tumours in magnetic resonance imaging data.
These useful techniques have brought tremendous improvement in the precision and speed of medical image analysis,
eventually leading to more accurate diagnoses and optimised treatment plans.

Materials and Methods: In this study, a new method was introduced to use Segment Anything Model 2 (SAM 2)
with the YOLOv12 model to detect and segment brain tumour using MRI. In this approach, the predictions of the
YOLOv12 bounding box tumour were used to automatically generate input prompts for SAM 2, reducing the need for
manual annotations. Then it was applied to a benchmark figshare image dataset where it performed better than the
state-of-the-art in the tumor segmentation task.

Results: This approach achieved 99.71% segmentation accuracy and a Dice coefficient of 91.85%.

Discussion:  Compared  with  state-of-the-art  models,  the  proposed  model  outperforms  in  terms  of  segmentation
accuracy and the Dice score.

Conclusion: This study indicates that the use of this hybrid model for radiological analysis will significantly increase
the accuracy and speed of radiological analysis, with the potential to aid in clinical decision-making and patient care.
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1. INTRODUCTION
Brain  tumours  threaten  human  life  and  health,  and

there is a wide range of treatment options and outcomes
based on tumour type. Around 10 million people died from
such cases of cancer worldwide in 2020, and there were
19.3 million new cases, highlighting the need for enhanced
detection  methods  [1].  In  medical  settings,  MRI  is  a

commonly  used  non-invasive  diagnostic  technique  for
evaluating  brain  tumours  [2].  Manual  brain  tumour
segmentation  takes  time,  is  labour-intensive,  and  may
introduce inter-observer variability,  which could prolong
diagnosis  and  treatment  planning.  Automated  brain
tumour segmentation is highly reliable, fast, and objective,
thus  benefiting  clinical  decision-making  and  enabling
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personalised  treatments.  Recent  advancements  in
computer  vision  and  machine  learning  have  positioned
CNNs as a powerful option. These state-of-the-art models
have effectively tackled complex computer-aided diagnosis
(CAD)  challenges,  including  tasks  such  as  recognition,
classification,  segmentation,  and  detection  [3].  Despite
their  success,  many  current  CAD  solutions  for  the
detection and segmentation of brain tumours using CNNs
are inefficient on various platforms and require significant
computational power. This leads to problems when using
normal devices, resulting in poor service quality and low
performance.

Numerous  algorithms  have  been  created  for  object
detection to improve the identification of different objects
within  images.  In  2012,  CNNs  revolutionised  computer
vision by learning to extract low- and high-level features
from images. Convolutional layers enable CNNs to detect
objects  irrespective  of  their  position.  However,  CNNs
could not directly handle object detection due to problems,
such as the variance in the number of objects, their sizes,
and  orientations.  Object  detection  requires  identifying
both class and location using bounding boxes. R-CNN [4],
introduced  in  2014,  used  a  selective  search  to  generate
2,000 region proposals, processed them through a CNN,
and  used  SVM  classifiers  for  detection.  Despite  its
significance,  R-CNN  was  slow,  taking  14  seconds  per
image  with  a  GPU.  Faster  R-CNN  [5]  improved  its
efficiency  by  integrating  region  proposal  networks,
facilitating end-to-end training, and eliminating the need
for  external  proposal  generation.  SSD  [6]  introduced
default  boxes  of  various  scales,  predicted  object  scores,
and adjusted shapes using multiscale feature maps. This
approach  eliminated  separate  proposal  generation,
improving  training  and  small  object  detection
performance.

YOLO  (You  Only  Look  Once)  improved  upon  the
concepts introduced by R-CNN, Faster R-CNN, and SSD.
The original YOLO framework, developed by Redmon et al.
[7], has been continuously upgraded. The YOLO algorithm,
which consists of a single unified neural network, is highly
attractive  due  to  its  outstanding  object  detection
capabilities. This algorithm transformed the field of object
detection by approaching it as a regression task, directly
predicting  bounding-box  coordinates  and  class
probabilities  from  pixel-level  information.  Each  new
version builds on the previous ones, focusing on enhancing
both  speed  and  accuracy.  Because  of  these  capabilities,
YOLO  is  used  in  a  wide  range  of  applications,  such  as
medical  imaging,  high-resolution  surveillance  systems,
healthcare,  and  manufacturing.

Convolutional  neural  networks  (CNNs)  serve  as
foundational  elements  in  medical  image  automatic
segmentation  because  of  their  effective  performance  in
deep  learning  visual  applications.  The  field  of  medical
image segmentation is largely influenced by U-Net [8], as
this  approach  employs  a  symmetric  encoder-decoder
architecture with skip connections to provide dense pixel-
level  predictions.  The  U-Net  architecture  contains  two
paths: an encoder for dimension reduction and a decoder

to restore spatial dimensions, incorporating features from
low-resolution  layers  at  each  stage.  The  network
implements  a  U-shaped  structure  with  these  two  paths.
Skip  connections  within  the  U-Net  allow  it  to  merge
contracting  path  features  with  expanding  path  features,
enabling the preservation of spatial information.

For  better  segmentation  outcomes,  numerous  U-Net
variants have been further developed, including ResUNet,
AttnUNet,  and U-Net++,  which  are  based on traditional
modules  such  as  dense  connections,  inception,  residual
connections,  and  attention  mechanisms.  The  U-Net
architecture  is  modified  by  incorporating  residual
connections in ResUNet, or Residual U-Net [9]. Residual
blocks  help  train  deeper  networks  by  addressing  the
vanishing gradient problem. This also enables the network
to  learn  identity  functions,  which  can  improve
performance.

Attention U-Net is a variant of the U-Net architecture
that  incorporates  an  attention  mechanism  to  improve
performance  in  medical  image  segmentation  [10].  Skip
connections  are  used  with  attention  gates  between  the
encoder  and  decoder  paths.  The  attention  mechanism
enables the network to learn which objects it should focus
on  in  an  image  automatically.  Attention  U-Net  has  been
applied  to  various  medical  imaging  tasks,  including  the
segmentation of brain tissues and abdominal structures.

DenseNet served as an inspiration for U-Net++ [11].
This network’s design scheme uses dense blocks and links
between the contracting and expanding paths, as well as
intermediary  grid  blocks.  In  addition  to  improving
segmentation  accuracy,  these  intermediary  blocks  assist
the  network  in  transferring  more  semantic  information
between regular paths, especially when their feature maps
share strong semantic similarity.

Even with these advances, annotating medical images
continues to be a time-consuming and expensive task, as it
generally requires medical expertise. This issue has led to
a  growing  interest  in  transfer  learning,  which  leverages
knowledge  from  extensive  natural  image  datasets  for
specific  medical  imaging  applications.  Recent
developments  in  foundational  models,  notably  the
transformer-based model known as the Segment Anything
Model  (SAM)  [12],  have  demonstrated  outstanding
performance in creating high-quality object masks from a
variety  of  input  prompts.  The  achievements  across
multiple  computer  vision  benchmarks  have  drawn
considerable  attention  for  their  potential  use  in  medical
image segmentation [13].

Previously used AI models in radiology include U-Net,
DeepLabv3+, and transformer-based architectures, which
have played an important role in enhancing medical image
segmentation,  but  they  usually  require  significant
annotated  data  and  lack  real-time  inference  capability.
Similarly,  detection  frameworks  such  as  earlier  YOLO
variants  offer  fast  localisation  but  are  not  optimised  for
fine-grained  segmentation.  Although  the  transformer-
based  model  SAM  2  possesses  remarkable  zero-shot
performance  in  segmenting  medical  images  [14],  it  still
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requires  input  from human experts.  This  dependence on
manual  input  limits  the  efficiency  and  scalability  of  the
segmentation process.

To  overcome  this  challenge,  we  propose  a  self-
promoting segmentation model that generates automatic
input  prompts  by utilising the pre-trained capabilities  of
the  YOLOv12  model.  Our  approach  aims  to  enhance  the
accuracy  and  computational  efficiency  of  tumour
segmentation  by  combining  YOLOv12  bounding  box
tumour predictions with the SAM 2 segmentation task. In
this work,  we use bounding box coordinate data to train
the  SAM  2  segmentation  model.  This  approach
significantly  decreases  annotation  time  compared  with
previous  methods  that  required  manual  segmentation  of
ground  truth  masks  for  training.  By  using  bounding-box
annotations,  our  model  can  achieve  a  high  degree  of
segmentation accuracy with less manual effort, making it
more practical for large-scale applications.

The  suggested  prompt-based  brain  tumour
segmentation  model  makes  the  following  important
contributions.

·  In  this  work,  we  present  a  new  hybrid  model  by
integrating YOLOv12, a recently powerful object detector,
with  the  SAM  2  framework  for  specifically  performing
accurate and fully automated brain tumour segmentation
of  MRI  scans.  With  this  integration,  YOLOv12  takes
advantage  of  its  real-time  tumour  localization  strength,
while  SAM  2  takes  advantage  of  its  high-resolution
segmentation strength, resulting in a complete solution for
both detection and segmentation tasks.

·  In  this  research,  we  present  a  self-prompt-based
mechanism. This work uses bounding boxes produced by
YOLOv12  as  prompts  for  segmentation,  adequately
achieving  high  accuracy  with  only  bounding-box
annotations,  thereby  reducing  annotation  time  and  the
expertise  needed.

·  In  this  work,  the  YOLOv12  model  is  used  to  detect
tumour regions with bounding boxes. Then the bounding
boxes are used to guide SAM 2 in segmenting the tumour
within  the  localized  area  only.  This  type  of  targeted
segmentation method allocates computational resources to
the  more  important  regions,  thereby  making  the  model
both efficient and accurate.

·  The  SAM  2  component  leverages  bounding  boxes
produced by YOLOv12 to approximate context-aware and
precise segmentation through a transformer architecture
that  generalizes  well  to  different  tumour  shapes,  sizes,
and  localizations.  This  collaboration  successfully
addresses  the  problem  of  segmenting  tumours  with
uneven  edges,  overlapping  structures,  or  low  contrast.

·  We  use  the  brain  tumour  dataset  from  Figshare  to
assess  our  suggested  model.  The  hybrid  model  is  also
compared  with  leading  segmentation  methods  based  on
important metrics, demonstrating that our proposed model
is clinically applicable and reliable.

2. EXISTING WORKS

2.1. Related Works
In 2000, Naser et al. [15] designed a CNN-based model

using a U-Net architecture for tumour segmentation and
detection.  The  proposed  method  was  capable  of  tumour
segmentation,  detection,  and  classification  in  a  single
pipeline using the same MRI data. A tumour classification
model  was  developed  using  a  densely  connected  neural
network classifier, based on a tumour grading model with
transfer  learning  using  VGG16  weights.  Complete
automation  becomes  possible  through  this  integrated
system,  which  achieves  simultaneous  processing  to
improve  tumour  analysis  workflow  efficiency.

In 2003, Yousef et al. [16] designed a model based on
the lightweight U-Net for brain tumour segmentation. The
proposed model uses a much smaller number of trainable
parameters  (2  million)  than  the  original  U-Net  (7.7
million). The new model is much more efficient in locating
the brain tumour with fewer parameters.

In 2024, Mithun et al. [17] proposed a model based on
the YOLONAS deep learning technique for brain tumour
classification  using  a  segmentation  approach.  The
proposed hybrid technique involves the combination of an
encoder–decoder  network  with  the  pre-trained
EfficientNet-B3, which acts as the encoder for this model.
This  architecture  aims  to  improve  the  segmentation  of
MRI images by efficiently detecting the features of brain
tumours.  This  approach  encompasses  several  stages,
namely  image  pre-processing,  segmentation,  and
classification.

In  2022,  Ottom  et  al.  [18]  presented  a  new  Znet
framework for  the segmentation of  2D brain  tumours.  It
employs  deep  neural  networks  as  well  as  data
augmentation strategies. Znet has been designed based on
skip  connections  and  an  encoder–decoder  architecture.
The Znet model has exhibited excellent results with a Dice
coefficient on an independent testing dataset.

In 2025, Ahsan et al. [19] designed a model combining
YOLOv5 with 2D U-Net for multiclass tumour analysis. In
this  model,  YOLOv5  was  used  for  detecting  tumour
localization,  and  U-Net  was  used  for  segmenting  the
tumour. This model decreases the amount of time needed
for diagnosis and thus facilitates early treatment.

In  2022,  Sami  et  al.  [20]  proposed  a  modified  U-Net
method.  Traditional  U-Net  methods  have  errors  in
accurately  identifying  tumours.  The  modified  U-Net
architecture  differs  from  the  traditional  U-Net
architecture. Compared to the original U-Net, the modified
U-Net  has  six  convolutional  layers,  replaces  3×3  filters
with 5×5 filters, uses 2,048 feature maps, and reduces the
feature  maps  to  8×8  in  the  encoding  part.  These
modifications  allow  the  model  to  increase  feature  map
dimensionality,  resulting  in  improved  performance.

In 2024, Saifullah et al. [21] presented a CNN with a
transfer learning model. In this model, DeepLabv3+ with a
ResNet18  backbone  was  used  for  tumour  segmentation.
DeepLabv3+ is highly effective in semantic segmentation,
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which  is  essential  for  accurately  defining  object
boundaries  in  medical  images.  ResNet18  serves  as  the
feature  extractor  (backbone)  within  DeepLabv3+.  This
strategic fusion improves performance in the challenging
task of tumour segmentation.

In  2023,  Nizamani  et  al.  [22]  introduced  a  deep
learning model that combined the U-Net architecture with
a  transformer  model  and  also  used  advanced  feature
enhancement techniques. Transformers were added to the
U-Net model to impart contextual understanding, allowing
the  model  to  better  capture  the  relationships  between
different parts of the image, which is crucial for accurate
segmentation. Feature enhancement techniques in image
pre-processing,  such  as  MHE,  CLAHE,  and  MBOBHE,
were  used  to  improve  the  visibility  of  important  details.
These  techniques  improved  tumour  segmentation
accuracy.

In  2024,  Zafar  et  al.  [23]  designed  a  hybrid  deep

learning model called Enhanced TumorNet. In this model,
YOLOv8s  and  U-Net  are  combined  for  improved  tumour
analysis. YOLOv8s is used for rapid detection, and U-Net
is used for precise segmentation. The overall performance
of  this  model  is  improved  by  utilising  the  advantages  of
both architectures.

In  2024,  Kassam  et  al.  [24]  proposed  a  model  that
combines YOLOv8 and a Segment Anything Model (SAM)
to  improve  the  analysis  of  glioma tumours.  The  YOLOv8
model  provides  quick  and  efficient  processing  of  MRI
images  through  a  CNN  to  detect  and  localise  potential
tumours by predicting bounding boxes, while SAM offers
precise  segmentation,  creating  a  robust  and  efficient
pipeline.

Table  1  presents  the  features  and  challenges  of
traditional and existing brain detection and segmentation
models.

Table 1. Features and challenges of existing brain tumor detection and segmentation models.

Author Methodology Features challenges

Naser et al.
[15]

U-Net+Vgg-16 1. The data imbalance was addressed by the authors
using a weighted loss function.
2. The method offers a noninvasive way to characterize
lower-grade cancers, which may help with diagnosis
and therapy planning.

1. In this study, manually segmented tumour masks were
used as the basis for training the U-Net model.
2. Although the U-Net is good at capturing local features,
it may struggle to capture long-range dependencies, which
could be important for accurately segmenting complex
tumour structures.

Yousef et al.
[16]

lightweight U-Net 1. Significantly reduces computational complexity.
2. The use of the cyclical learning rate(CLR) leads to a
better generalisation in segmenting brain tumors.
 

1.  The  model  may  not  perform  equally  well  in  different
data distributions or tumour types.

Mithun et al.
[17]

Yolo NAS 1. YOLO NAS prioritises important areas in the images
using an attention method.
2. The pre-processing step includes noise reduction
using a hybrid anisotropic diffusion filtering technique,
which enhances the quality of MRI images before
analysis.

1. Some segmented images may contain small fragments
incorrectly identified as tumours.
2. The segmentation results depended on the HADF
technique.

Ottom et al.
[18]

Znet 1. Potentially avoids the vanishing gradient problem.
2. Potential of the architecture for clinical applications.

1.  The  Znet  model  has  more  trainable  parameters
(44,384,833)  than  the  U-Net  model  (14,788,929),  which
requires higher computation.
2.  The  performance  of  Znet  in  other  MRI  sequences  or
combined modalities has not yet been explored.

Ahsan et al.
[19]

Yolov5+U-Net 1. YOLOv5 and 2D U-Net together produced a higher
DSC for segmentation than 2D U-Net alone.
2. Less inference time is required to detect tumors.

1. The proposed method requires the training of two
separate models, which can be more computationally
intensive than single model approaches.

Sami et al. [20] Modified U-Net 1. The modified U-Net includes additional layers and
changes in filter size, which contribute to its superior
performance.

1. The modified U-Net has more layers and larger filter
sizes, which likely increases computational requirements.
2. A manual annotation mask was required to train the
model.

Saifullah et
al.[21]

Deeplabv3+ + ResNet18 1. Atrous Spatial Pyramid Pooling enhances the ability
of the model to recognise both large and small tumor
regions.
2. The excellent performance of the model in defining
tumour boundaries.

1. Computationally intensive models.
2. Its applicability in resource-constrained clinical
settings.
 

Nizamani et al.
[22]

U-Net+Transformer 1. Transformer-based models can effectively extract
contextual and spatial information from magnetic
resonance data, which helps in segmentation of tumors
with irregular shapes.

1.  The  integration  of  U-Nets  with  Transformers  and
advanced feature enhancement techniques likely results in
a computationally intensive model.

Zafar et al. [23] Yolov8’s+U-Net 1. The model is suitable for real-time applications. 1. The hybrid model that combines YOLOv8s and U-Net is
computationally intensive.
2. This model requires high-quality data to achieve optimal
performance.

Kassam et al.
[24]

Yolov8+SAM 1. This pipeline is suitable for real-time application.
2. The model provides a low inference time to detect
and segmenting tumors.

1.  This  supports  only  two-dimensional  (2D)  MRI  tumour
segmentation.

http://2.it/
http://1.it/
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2.2. Research Gap
The research gaps mentioned below were found in the

literature review.
· For training, traditional segmentation algorithms, such

as  U-Net  and  DeepLabv3+  require  ground-truth  masks;
however,  the  process  of  constructing  these  masks  is
challenging because healthcare professionals must manually
annotate them. This process is time-consuming and requires
specialised radiological knowledge, restricting scalability.

· Conventional models, such as U-Net and DeepLabv3+,
attempt  to  segment  the  entire  MRI  image  at  once  without
first  identifying  the  tumour,  which  can  reduce  precision  in
complex-structure tumours or noisy images.

·  Slow  inference  times  are  a  common  problem  with
conventional  high-accuracy  segmentation  algorithms,
making them inappropriate for real-time or mobile health
applications.

· There is still much to explore regarding the potential
of combining prompt-based segmentation techniques, such
as  the  transformer-based  SAM2,  with  high-performance
detection  models,  such  as  YOLOv12,  in  brain  tumour
applications.

3. PROPOSED METHODOLOGY
Our  proposed  model  combines  two  cutting-edge

algorithms,  YOLOv12  and  SAM  2,  to  efficiently  identify

and segment brain tumours in MRI images.  Initially,  the
YOLOv12  model  detects  the  location  of  tumours  and
encircles them with bounding boxes. Subsequently, these
bounding boxes are used as input prompts for the SAM 2
model,  which  accurately  segments  the  tumour  using the
given  bounding  box  coordinates  (Fig.  1).  A  pre-trained
YOLOv12 model is used for tumour detection. This model
is  selected  for  its  remarkable  accuracy  and  speed
performance,  especially  in  real-time  applications.

YOLOv12  uses  a  CNN  to  process  MRI  images.  This
CNN  extracts  essential  features  from  the  images,  and
based  on  these  features,  YOLOv12  predicts  bounding
boxes  around  potential  tumours.  The  coordinates  of  the
bounding boxes predicted by YOLOv12 are then used as
input  for  the  SAM  2  model.  To  handle  the  output  of
YOLOv12 in our environment, a conversion mechanism is
created  that  translates  the  coordinates  of  the  bounding
boxes  into  spatial  prompts  that  SAM  2  can  handle
properly.  Bounding  boxes  are  rescaled  to  fit  the  input
dimensions of SAM 2, and other preprocessing operations
are  applied  to  handle  tumours  with  irregular  or
overlapping  boundaries.  This  smooth  transition  between
the  detection  and  segmentation  processes  reduces  the
dependence  on  manual  annotations  and  increases  both
precision  and  efficiency.  These  coordinates  serve  as
prompts  for  SAM  2,  guiding  its  segmentation  process.

Fig. (1). The suggested model's workflow.
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The  SAM  2  model,  lightweight  and  highly  accurate,
refines YOLOv12's detection results. It uses bounding-box
coordinates to perform detailed segmentation, delineating
exact tumour boundaries.

3.1. Dataset
The  dataset  used  in  this  study  was  the  publicly

available  Brain Tumour MRI Figshare dataset,  originally
hosted  on  FigShare  and  also  available  on  Kaggle  for
accessibility [25]. It contains 3,064 T1-weighted contrast-
enhanced  MRI  images  and  their  corresponding  binary
masks. The image size of the MRI dataset was 640×640.
The dataset was divided into 2,451 training images,  307
validation  images,  and  306  test  images.  For  visual
inspection, a random selection of MRI images was chosen,
as  shown in  Fig.  (2A),  to  guarantee the consistency and
high  quality  of  our  data.  Fig.  (2B)  shows  these  images
superimposed with the corresponding ground-truth masks.
This  step  is  crucial  to  verify  that  the  MRI  images  and
ground-truth masks are properly aligned for training our
prediction  model.  Annotation  text  labels  are  required  to
train  YOLOv12;  therefore,  the  binary  masks  were
converted  to  label.txt  files  for  training  YOLOv12.

3.2. Data Augmentation
The  data  augmentation  techniques  used  during  the

training  of  the  YOLOv12  model  included  the  following:
•  Blur:  Applying  a  slight  Gaussian  blur  with  a

probability  of  0.01.  This  enhances  the  model's  ability  to
handle motion blur or low-quality images during inference.

•  MedianBlur:  Using  median  blurring,  also  with  a

probability  of  0.01.  This  alteration  helps  the  model
manage  noise  or  sharp  edges  present  in  the  images.

•  ToGray:  Converting  images  to  greyscale,  with  a
probability of 0.01, enabling the model to concentrate on
spatial  characteristics  instead  of  colour,  which  can  be
advantageous when colour information is less significant
or unreliable.

• CLAHE: Improving image contrast with a probability
of 0.01, assisting the model in focusing on key features by
enhancing the visual distinctiveness of the images.

These  enhancements  were  chosen  to  simulate  real-
world variations in object detection tasks, such as changes
in lighting, image quality, and environmental factors that
can  affect  object  visibility  and  appearance.  The
augmentation  objective  was  to  decrease  overfitting  and
improve the models' capacity for generalization.

3.3.  Demonstration  of  the  proposed  YOLOv12  for
detecting brain tumours

YOLOv12  demonstrates  remarkable  improvement  in
the  field  of  real-time  object  detection  by  expanding  the
main  concepts  of  the  YOLO model  series.  YOLOv12  was
launched in February 2025 by researchers Yunjie Tian et
al. [26]. In the YOLOv12 model, attention mechanisms are
added to improve detection precision without affecting its
rapid  processing  capabilities.  In  the  proposed  model,
YOLOv12  is  used  for  tumour  detection  with  bounding
boxes. Several important changes have been introduced in
the  architecture  of  YOLOv12  to  detect  objects  more
accurately.  The  architecture  of  YOLOv12,  presented  in
Fig.  (3),  contains  three  main  components  [27].

Fig. (2). Sample images of the dataset: (A) MRI images and (B) corresponding ground-truth masks.
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Fig. (3). Architecture of YOLOv12

3.3.1. Backbone
YOLOv12 uses a Residual Efficient Layer Aggregation

Network  (R-ELAN)  as  its  backbone.  This  network  is
designed  with  deeper  residual  connections  to  improve
feature  extraction  and  reuse.  It  uses  7×7  separable
convolution layers to capture spatial context while limiting
the  number  of  trainable  parameters.  Advanced
convolutional blocks, which are key components of the R-
ELAN, are employed in the backbone to enhance feature
extraction  while  maintaining  computational  efficiency
[28].  These  strategies  improve  performance  without
increasing  computational  overhead.  By  using  these
lightweight  operations  with  higher  parallelization  in  the
backbone, YOLOv12 achieves faster processing speeds for
real-time object detection.

A  novel  convolutional  block  introduced  by  YOLOv12
aims  to  reduce  the  complexity  of  the  operation  and
increase parallelism, allowing it to perform better than its
previous  versions.  These  blocks  are  divided  into  a
sequence of smaller kernels, which can be represented by
Eq.(1)

(1)

Where  Fout  is  the  output  featuremap,  Wi  is  the
convolutional  filter,Fin  is  the  input  feature

Instead of  using a  few larger  convolutions,  YOLOv12
processes  information  more  quickly  by  distributing  the
computing  among  many  compact  convolutions.
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3.3.2. Neck
YOLOv12 connects  its  backbone to  the head through

the  neck.  It  also  incorporates  multi-scale  features  from
various  regions  of  the  network.  An  area-attention
mechanism helps the model focus on challenging details in
the image. The area attention builds on the FlashAttention
network,  which  significantly  reduces  memory  and
computational  costs.  It  aggregates  information  from
multiple scales, refines it, and then passes it to the head
for predictions. The process of the attention operation in
the neck is described mathematically in Eq. (2).

(2)

Where R, P, and V are query, key, and value matrices,
and is the dimensionality of the key.

3.3.3. Head
In  YOLOv12,  the  head  receives  information  from the

neck  and  generates  the  final  outputs,  such  as  the
bounding  box  coordinates  and  the  class  of  each  box.  It
uses  loss  functions  that  balance  localization  and
classification  objectives,  resulting  in  improved  overall
detection  performance.  Both  the  loss  functions  and  the
prediction  pathways  are  designed  for  fast  and  efficient
operation in real-time applications. YOLOv12 may employ
an  extended  version  of  the  typical  YOLO-style  loss
function, which is mathematically represented by Eq. (3).

(3)

Wherex   and   denote  predicted,bounding  box
coordinates,and confidence,respectively.

These  architectural  components  work  together  to
achieve  a  balance  between computational  efficiency  and
detection  accuracy.  YOLOv12  also  introduces  multiple
model versions (eg, 12n, 12s, 12m, 12x), allowing users to
prioritise  speed  or  accuracy  based  on  their  specific
requirements.

3.4. Demonstration of the proposed SAM2 model for
Detecting Brain Tumour Segmentation

Segment Anything Model (SAM) is a foundation model
designed  for  image  segmentation  that  can  be  initiated
through  prompts  [29].  SAM  2  was  created  for  prompt-
based  visual  segmentation  in  both  images  and  videos,
expanding SAM's capabilities to include the video domain.
SAM 2 demonstrates better performance in medical image
segmentation  while  being  significantly  faster  than  the
original  SAM  [30].  The  proposed  hybrid  model  employs
SAM  2  for  segmenting  brain  tumours,  using  the  input
prompt  derived  from YOLOv12's  brain  tumour  detection
with  a  bounding  box,  as  shown  in  Fig.  (4).  SAM  2  [31]
contains  the  following  three  components  for  image
segmentation.

3.4.1. Image Encoder
SAM  2  uses  a  Hiera  image  encoder  pre-trained  with

MAE  (Masked  Autoencoder).  For  single  images,  this
encoder processes the input and provides unconditioned
tokens (feature embeddings) that represent the spatial and
semantic details of the image.

Fig. (4). SAM 2 Architecture
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3.4.2. Prompt Encoder
The prompt encoder is designed to handle different user

inputs,  such  as  points,  boxes,  or  text,  to  guide  the
segmentation  process.  It  interprets  these  prompts  and
transforms them into  a  feature  space corresponding to  the
image features derived by the image encoder.

3.4.3. Mask Decoder
The  mask  decoder  uses  two-way  transformer  blocks  to

update prompt and image embeddings. Its role is to combine
the features from the prompt encoder and the image encoder
to produce the optimal segmentation prediction. The two-way
transformer blends these features and incorporates an IoU
head to assess the quality of the segmentation mask.

3.5.  Model  Training,  Fine-Tuning,  and  Transfer
Learning

The SAM 2 models were used in their pre-trained zero-
shot  large  (ViT-L)  versions,  utilising  default  settings  for
inference  without  any  fine-tuning  or  training.  The  input
prompts  for  SAM  2  were  generated  by  YOLOv12.  Thus,
only  the  YOLOv12  model  was  trained  to  identify  brain
tumours, while the SAM 2 model remained frozen and was

used solely for segmentation tasks. This strategy leverages
YOLOv12's detection process and relies on the pre-trained
segmentation capabilities  of  SAM 2 without  updating its
original weights. The fine-tuning of the hyperparameters
of the YOLOv12 model is presented in Table 2.

4. RESULTS AND DISCUSSION

4.1. Environmental Setup
The  experiments  were  conducted  using  the  Google

Colab  Pro+ platform,  which  provides  a  GPU-accelerated
environment.  The  hardware  configuration  included  an
NVIDIA Tesla T4 GPU, offering 15,360 MiB of dedicated
memory. The system was configured with NVIDIA drivers
version 550.55.17 and CUDA version 13.4. The back-end
environment of Google Colab was based on Ubuntu 20.04
and utilised Python 3.10.12.

4.2. Metrics
To  evaluate  the  quality  of  the  suggested  model

segmentation,  we employed pixel-level  metrics  including
accuracy,  Dice coefficient,  IoU,  precision,  recall,  and F1
score. Table 3 represents the definitions of the metrics.

Table 2. YOLOv12 Model Configuration and Fine-Tuning Using the Hyperparameter Setup.

S. No. Parameter Setting
1. Model Architecture YOLOv12m (497 layers, 2,519,859 parameters, 6.0 GFLOPs)
2. Transferred Weights 499/499 items transferred from pre-trained weights
3. Dataset Figshare Brain Tumour MRI dataset (3,064 images)
4. Data Split 80:10:10
5. Pre-processing: Data Augmentation Blur, MedianBlur, ToGray, CLAHE (probabilities = 0.01 each), CopyPaste (0.1), RandAugment
6. Optimizer AdamW (learning rate = 0.002, momentum = 0.9)
7. Batch Size 16
8. Input Image Size 640x640 pixels
9. Epochs 75
10. Optimizer Configuration Weight decay: 0.0005 (128 groups), 0.0 (121 groups), bias: 0.0 (127 groups)
11. Loss Functions CIoU  loss  (bounding  box  regression),  focal  loss  (classification),  and  Cross-entropy  (segmentation

refinement)
12. Bounding Box to SAM2 Prompt Conversion YOLOv12 bounding boxes (xmin,ymin,xmax,ymax) normalised to SAM2 input resolution.
13 Baselines Compared U-Net, DeepLabv3+, YOLOv8+SAM

Table 3. Evaluation Metrics.

S.No Metrics Definition
1. Dice Score

2. Accuracy  [32]

ee: True Positives, ff: True Negatives, nn: False Positives, mm: False Negatives
3. Precision

4. Recall

5. F1-Score

6. IOU
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4.3. Pseudocode for tumour segmentation
Pseudocode for tumour Segmentation is presented in

Table  4.  Combining  YOLOv12  detection  and  SAM  2’s
segmentation allows the proposed framework to  achieve
accurate  tumour  segmentation.  Initially,  the
YOLOv12_TUMOR_DETECTION  function  processes  the
medical  image  using  the  YOLOv12  model  and  pinpoints

potential  tumour  regions,  along  with  information  about
their  class  identifiers,  confidence  score,  and  the
coordinates of the bounding box. Each detected region of
interest (ROI) is then passed to the SAM 2 segmentation
pipeline.  For  each  bounding  box,  the
SAM2_SEGMENTATION  function  is  run  to  produce  a
detailed segmentation mask by setting binary values over
the region of the bounding box.

Table 4. Pseudocode for brain Tumor segmentation.

S.No Code

1. Function HYBRID _TUMOR_SEGM(image, yolov12_model, sam2_model)
2. Detections YOLOv12_TUMOR_DETECTION(image, yolov12_model)
3. Tumor_info ← [ ]
4. For Each detection in the detections: do

5. Class_id detection[“class_id-tumour”]

6. Confidence detection [“confidence Score"]

7. Bounding_box ← detection["bounding_box coordinates"]

8. Predictor INIT_SAM2(sam2_model)

9. Predictor.set_image(image)

10. Segmentation_mask SAM2_SEGMENTATION(predictor, bounding_box)

11. Tumor_infom.append({

12. "Class_id": class_id-tumour,

13. "Confidence": detected confidence score,

14. "Bounding_box": detected bounding_box,

15. "Segmentation_mask": segmentation_mask

16. })

17. End for

19. Return tumor_infom

20. End function

21. Function YOLOv12_TUMOR_DETECTION(image, model)

22. Results model(image)

23. Extract detections with class_id, confidence, bounding_box

24. Return a list of detections

25. End function

26. Function INIT_SAM2(model)

27. Predictor SamPredictor(model)

28. Return predictor

29. End function
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30. Function SAM2_SEGMENTATION(predictor, bounding_box)

31. x_min, y_min, x_max, y_max bounding_box

32. Box [x_min, y_min, x_max, y_max]

33. Masks, _, _ predictor.predict(box=box[None, :])

34. Segmentation_mask ← (masks[0] > 0.5)

35. Return segmentation_mask

36. End function

4.4. YOLOv12 Model Outcomes of Tumour Detection
Various performance metrics of tumor detection using

YOLOv12 model are shown in Fig. (5), highlighting several
aspects of the model during training and validation phases
over 75 epochs. During the training phase, both box loss
and classification loss decreased as the number of epochs
increased,  indicating  progressive  improvement  in  the
model’s classification capabilities. The dfl_loss is employed
to  increase  the  accuracy  of  bounding-box  predictions,

particularly for objects that are difficult to differentiate or
closely  resemble  each  other.  During  the  model  training,
df_loss  decreased  as  the  number  of  epochs  increased,
demonstrating  that  the  model  accurately  predicted  the
bounding boxes. Durning the validation, box_loss, cls_loss,
and  dfl_loss  decreased  sharply  as  the  number  of  epochs
increased.  Finally,  our  YOLOv12  model  achieved  a
precision of 90.28%, a recall of 86.66%, and an mAP50 of
92.9%.  Thus,  the  resulting  model  nearly  perfectly
predicted  tumour  detection.

(Table 4) contd.....

Fig. 5 contd.....
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Fig. (5). Performance metrics of the YOLOv12 model. (A) Loss curves; (B) Precision, recall, and mAP50 curves.

The confusion matrices associated with the suggested
YOLOv12 model are graphically depicted in Fig. (6) using
the  validation  data.  The  normalised  confusion  matrix  is

utilized  to  pinpoint  the  highest  and  lowest  performing
classes, providing a comprehensive understanding of the
model's performance across various categories.

Fig. (6). YOLOv12 model Normalised Confusion Matrix.



Self-Prompting Hybrid YOLOv12-SAM 2 Model 13

Fig. (7). Validation and prediction batches for tumour detection (A) validation batch and (B) predication batch.

presents  a  visual  comparison  between  the  validation
batch (Fig. 7A) and the prediction batch (Fig. 7B) generated
by  the  YOLOv12  model.  These  batches  are  designed  to
improve  computational  efficiency  and  increase  inference
speed,  facilitating  the  detection  of  tumors  across  various
images. The validation images display tumor locations on the
original  images,  whereas  the  predicted  images  show  the
model’s output after training. From this comparison, it  can
be  concluded  that  YOLOv12  exhibits  exceptional  tumor
detection  performance,  as  evidenced  by  the  accurate
localization  of  tumors  with  bounding  boxes  and  the
corresponding  confidence  scores,  closely  aligned  with  the
validation batch.

4.5. Results of the Hybrid Proposed Model
The  YOLOv12–SAM  2  framework  was  evaluated  by

comparing  the  predicted  segmentation  masks  with  the
corresponding ground truth masks. In Fig. (8), several test
cases are presented to illustrate the model’s performance
in  segmenting  brain  tumours.  The  figure  shows that  the
predicted  masks  closely  match  the  ground  truth  masks,
indicating that our system can accurately and effectively
segment brain tumors.

Segmentation  quality  was  evaluated  using  key
performance  metrics,  including  Dice  Coefficient  (DSC),
Intersection over Union (IoU), accuracy, recall, precision,
and F1 score. The segmentation results are illustrated in
Fig.  (9)  using  these  metrics.  Our  model  achieved  an
accuracy  of  99.73%,  a  recall  of  89.06%,  a  precision  of
94.75%, a DSC of 91.8%, an F1 score of 91.82%, and an
IoU  of  84.87%.  These  results  demonstrate  that  the
proposed  model  provides  highly  accurate  and  reliable
segmentation  of  brain  tumours.

The  results,  obtained  using  a  fixed  split  of  2,451
training  images,  307  validation  images,  and  306  test
images,  show  consistent  performance  across  multiple
evaluation  metrics.  In  addition  to  accuracy  and  Dice
coefficient,  other  measures  such  as  precision,  recall,  F1
score,  and  IoU  were  also  calculated  and  are  presented
with their mean, median, and standard deviation to reflect
both  central  tendency  and  variability,  as  shown  in  Fig.
(10).  This  comprehensive  assessment  confirms  the
robustness  of  the  developed  model  and  provides  further
confidence in its generalizability.



14   The Open Public Health Journal, 2025, Vol. 18 Pasunoori et al.

Fig. (8). Some test cases of ground truth mask vs. predicted mask.

Fig. (9). Proposed model metrics Vs. performance.
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Fig. (10). Mean, median, and standard deviation metrics of proposed model

4.6. Heatmap overlay
The segmented output mask is a plain black-and-white

image and is separate from the original MRI scan, making
it difficult to visualize the actual tumour area on the MRI.

A heatmap overlay, which adds color to the tumour region,
can be blended on top of the original MRI image, as shown
in Fig. (11). This heatmap overlay helps non-technical AI
users,  such  as  doctors,  quickly  identify  the  predicted
tumour  region  within  the  original  MRI  scans.

Fig. (11). Heatmap overlay (A) original image (B) segmented output (C) heatmap overlay
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4.7. Comparison of the proposed model with existing
models

In this section, we conduct a comprehensive evaluation
of  the  performance  of  our  integrated  YOLOv12-SAM  2
model  in  tumour  segmentation.  The  model’s  remarkable
accuracy  and  capability  in  segmenting  tumours  are
underscored  by  performance  metrics,  including  a  Dice
coefficient of 91.8% and an accuracy of 99.7%. Our model
outperforms  alternative  techniques,  such  as  U-Net,
DeepLabv3+,  and  other  YOLO  models,  as  indicated  in
Table 5.  The Dice coefficient of  91.8% reflects a precise
spatial  overlap  between  the  predicted  masks  and  the
ground-truth  masks.  Additionally,  the  99.7%  accuracy
score highlights the model’s reliable ability to detect and
segment tumours. YOLOv12 provides accurate localisation
through bounding boxes, which are then used as prompts
for SAM 2 to enable segmentation in regions with complex
tumour  boundaries.  This  combination  of  complementary
detection  (YOLOv12)  and  segmentation  (SAM  2)
mechanisms leads to more robust results, with fewer false

positives and better generalisation across a wide range of
MRI scans.

Although  alternative  methods,  such  as  YOLONAS,
YOLOv8 + U-Net, DeepLabv3+ + ResNet18, 2D-UNet, and
Znet demonstrate commendable performance metrics, our
proposed approach consistently surpasses them in terms
of the Dice coefficient, highlighting its superior accuracy
in tumour segmentation. The effectiveness of our method
is particularly evident when compared to Znet, producing
comparable  outcomes  in  both  accuracy  and  Dice
coefficient. The high accuracy and Dice score demonstrate
the  model’s  precision  in  segmenting  and  delineating
tumour regions. These findings indicate that our model is
a powerful tool in neuroradiology, capable of diagnosing
brain  tumours  with  greater  precision,  especially  in
complex cases that are challenging for human evaluation.

Fig.  (12)  represents  the comparative  performance of
YOLOv12+SAM2  and  existing  state-of-the-art  models  in
terms of precision and Dice coefficient.

Table 5. Performance comparison of existing DL Models with the Proposed Model.

S.No. Model Accuracy DICE Score

1. 2D-Unet [34] 92.16 81.2
2. MSD [35] - 84.69
3. 3D-Unet [36] - 86
4. YOLONAS [17] 96.20 85.81
5. Znet [18] 99.55 91.58
6. YOLOv5 + 2D U-Net [19] - 88.1
7. Modified U-Net [20] 99.5 85.02
8. Deeplabv3+ +ResNet18 [21] 97.48 91.2
9. Yolov8+U-Net [23] 98.6 -
10. Yolov8+SAM [24] - 79
11. Proposed Model 99.7 91.8

Fig. (12). Comparative performance of YOLOv12+SAM2 and existing state-of-the-art models
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Fig. (13). Inference times of the tumour segmentation model.

4.8. Detection time
The  evaluation  of  the  models  was  carried  out  on  a

dataset  comprising  91  frames,  each  with  an  image
dimension  of  640  ×  640  pixels.  (Fig.  13)  represents  the
inference time for different models. The inference time for
the  3D  U-Net  model  was  approximately  2  minutes  to
complete  the  tumour  segmentation  process,  while  the
YOLO  +  SAM  model  required  15  to  25  seconds.  In
contrast,  our  proposed  model  required  only  40–45
milliseconds  to  segment  the  tumour.  Table  6  shows  a
comparison of inference times for different state-of-the-art
models.  Due  to  its  significantly  reduced  inference  time,
the  YOLOv12  +  SAM  2  model  was  better  suited  for
practical  MRI  brain  tumour  segmentation  applications,
providing  faster  and  reliable  outcomes  during  real-time
surgical procedures.
Table  6.  Inference  Time  of  different  deep  learning
Models.

S.No Model Inference Time(sec)
1. 3D U-Net [37] 120
2. YOLO+SAM [24] 25
3. Proposed Model 0.045

CONCLUSION
In  this  paper,  we  presented  a  self-prompting  brain

tumour segmentation model that combines the advantages of
SAM  2  and  YOLOv12  for  real-time  brain  tumour  detection
and segmentation. Our method overcomes the drawbacks of
manual  input  prompts  by  using  YOLOv12’s  pre-trained
features to produce bounding box predictions, which SAM 2
then  uses  for  precise  segmentation.  Through  extensive
experiments with brain tumour datasets, we showed that our
model  outperforms current  state-of-the-art  techniques.  The
notable enhancements in segmentation accuracy, along with
the decreased requirement for detailed ground-truth masks,
underscore the practicality and efficiency of our approach for

large-scale applications. The model achieved a DICE score of
91.8%,  an  accuracy  of  99.7%,  and  an  inference  time  of  45
milliseconds,  demonstrating  strong  capability  for  efficient
and effective tumour segmentation. This advancement could
significantly  impact  the  field  of  tumour  surgery,  as
incorporating this model with an intraoperative MRI (ioMRI)
system  may  lead  to  enhanced  patient  outcomes  and  more
successful  surgical  procedures.  To  achieve  clinical
translation, the data should be revalidated with radiologists
to  further  confirm  the  validity  of  the  segmented  outputs.
Furthermore, practical issues, such as hardware limitations
and inference lag, must be addressed prior to integration into
radiology  workflows.  Future  steps  toward  deployment  will
thus  require  an  iterative  approach  of  testing  with  clinical
specialists to reinforce real-world applicability.

LIMITATIONS AND FUTURE WORK
This  model  performed  better  on  large  or  regularly

shaped  tumours,  but  the  dataset  used  may  introduce
biases due to limited diversity in patient populations and
MRI  acquisition  conditions.  Furthermore,  the  current
evaluation  is  restricted  to  conventional  MRI  sequences,
which may limit the generalisability of the results to other
imaging  modalities  and  tumour  subtypes.  The  clinical
applicability  and  reliability  of  the  proposed  model  in
practical diagnostic settings could be further enhanced by
diversifying  and  expanding  the  dataset  to  include
multimodal  and  heterogeneous  magnetic  resonance
images.  Additionally,  incorporating  radiologist  feedback
loops would allow continuous refinement of the model to
better align with expert clinical practice.
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