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Abstract:

Introduction: The brain is the main organ of the nervous system and serves as the command and control centre for
all bodily functions required to maintain a normal, healthy life. Brain tumours are characterised by the growth of
abnormal cells in the brain, which disrupts healthy cerebral tissue. Early diagnosis and effective treatment require
the timely identification and segmentation of brain tumours. Traditional methods of diagnosing brain tumours include
manually reviewing MRIs, which is a laborious and error-prone procedure. Researchers have recently developed
many novel automated methods for detecting and segmenting brain tumours in magnetic resonance imaging data.
These useful techniques have brought tremendous improvement in the precision and speed of medical image analysis,
eventually leading to more accurate diagnoses and optimised treatment plans.

Materials and Methods: In this study, a new method was introduced to use Segment Anything Model 2 (SAM 2)
with the YOLOv12 model to detect and segment brain tumour using MRI. In this approach, the predictions of the
YOLOvV12 bounding box tumour were used to automatically generate input prompts for SAM 2, reducing the need for
manual annotations. Then it was applied to a benchmark figshare image dataset where it performed better than the
state-of-the-art in the tumor segmentation task.

Results: This approach achieved 99.71% segmentation accuracy and a Dice coefficient of 91.85%.

Discussion: Compared with state-of-the-art models, the proposed model outperforms in terms of segmentation
accuracy and the Dice score.

Conclusion: This study indicates that the use of this hybrid model for radiological analysis will significantly increase
the accuracy and speed of radiological analysis, with the potential to aid in clinical decision-making and patient care.
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1. INTRODUCTION

Brain tumours threaten human life and health, and
there is a wide range of treatment options and outcomes
based on tumour type. Around 10 million people died from
such cases of cancer worldwide in 2020, and there were
19.3 million new cases, highlighting the need for enhanced
detection methods [1]. In medical settings, MRI is a

commonly used non-invasive diagnostic technique for
evaluating brain tumours [2]. Manual brain tumour
segmentation takes time, is labour-intensive, and may
introduce inter-observer variability, which could prolong
diagnosis and treatment planning. Automated brain
tumour segmentation is highly reliable, fast, and objective,
thus benefiting clinical decision-making and enabling
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personalised treatments. Recent advancements in
computer vision and machine learning have positioned
CNNs as a powerful option. These state-of-the-art models
have effectively tackled complex computer-aided diagnosis
(CAD) challenges, including tasks such as recognition,
classification, segmentation, and detection [3]. Despite
their success, many current CAD solutions for the
detection and segmentation of brain tumours using CNNs
are inefficient on various platforms and require significant
computational power. This leads to problems when using
normal devices, resulting in poor service quality and low
performance.

Numerous algorithms have been created for object
detection to improve the identification of different objects
within images. In 2012, CNNs revolutionised computer
vision by learning to extract low- and high-level features
from images. Convolutional layers enable CNNs to detect
objects irrespective of their position. However, CNNs
could not directly handle object detection due to problems,
such as the variance in the number of objects, their sizes,
and orientations. Object detection requires identifying
both class and location using bounding boxes. R-CNN [4],
introduced in 2014, used a selective search to generate
2,000 region proposals, processed them through a CNN,
and used SVM classifiers for detection. Despite its
significance, R-CNN was slow, taking 14 seconds per
image with a GPU. Faster R-CNN [5] improved its
efficiency by integrating region proposal networks,
facilitating end-to-end training, and eliminating the need
for external proposal generation. SSD [6] introduced
default boxes of various scales, predicted object scores,
and adjusted shapes using multiscale feature maps. This
approach eliminated separate proposal generation,
improving training and small object detection
performance.

YOLO (You Only Look Once) improved upon the
concepts introduced by R-CNN, Faster R-CNN, and SSD.
The original YOLO framework, developed by Redmon et al.
[7]1, has been continuously upgraded. The YOLO algorithm,
which consists of a single unified neural network, is highly
attractive due to its outstanding object detection
capabilities. This algorithm transformed the field of object
detection by approaching it as a regression task, directly
predicting bounding-box coordinates and class
probabilities from pixel-level information. Each new
version builds on the previous ones, focusing on enhancing
both speed and accuracy. Because of these capabilities,
YOLO is used in a wide range of applications, such as
medical imaging, high-resolution surveillance systems,
healthcare, and manufacturing.

Convolutional neural networks (CNNs) serve as
foundational elements in medical image automatic
segmentation because of their effective performance in
deep learning visual applications. The field of medical
image segmentation is largely influenced by U-Net [8], as
this approach employs a symmetric encoder-decoder
architecture with skip connections to provide dense pixel-
level predictions. The U-Net architecture contains two
paths: an encoder for dimension reduction and a decoder
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to restore spatial dimensions, incorporating features from
low-resolution layers at each stage. The network
implements a U-shaped structure with these two paths.
Skip connections within the U-Net allow it to merge
contracting path features with expanding path features,
enabling the preservation of spatial information.

For better segmentation outcomes, numerous U-Net
variants have been further developed, including ResUNet,
AttnUNet, and U-Net++, which are based on traditional
modules such as dense connections, inception, residual
connections, and attention mechanisms. The U-Net
architecture is modified by incorporating residual
connections in ResUNet, or Residual U-Net [9]. Residual
blocks help train deeper networks by addressing the
vanishing gradient problem. This also enables the network
to learn identity functions, which can improve
performance.

Attention U-Net is a variant of the U-Net architecture
that incorporates an attention mechanism to improve
performance in medical image segmentation [10]. Skip
connections are used with attention gates between the
encoder and decoder paths. The attention mechanism
enables the network to learn which objects it should focus
on in an image automatically. Attention U-Net has been
applied to various medical imaging tasks, including the
segmentation of brain tissues and abdominal structures.

DenseNet served as an inspiration for U-Net++ [11].
This network’s design scheme uses dense blocks and links
between the contracting and expanding paths, as well as
intermediary grid blocks. In addition to improving
segmentation accuracy, these intermediary blocks assist
the network in transferring more semantic information
between regular paths, especially when their feature maps
share strong semantic similarity.

Even with these advances, annotating medical images
continues to be a time-consuming and expensive task, as it
generally requires medical expertise. This issue has led to
a growing interest in transfer learning, which leverages
knowledge from extensive natural image datasets for
specific  medical imaging applications. Recent
developments in foundational models, notably the
transformer-based model known as the Segment Anything
Model (SAM) [12], have demonstrated outstanding
performance in creating high-quality object masks from a
variety of input prompts. The achievements across
multiple computer vision benchmarks have drawn
considerable attention for their potential use in medical
image segmentation [13].

Previously used Al models in radiology include U-Net,
DeepLabv3+, and transformer-based architectures, which
have played an important role in enhancing medical image
segmentation, but they usually require significant
annotated data and lack real-time inference capability.
Similarly, detection frameworks such as earlier YOLO
variants offer fast localisation but are not optimised for
fine-grained segmentation. Although the transformer-
based model SAM 2 possesses remarkable zero-shot
performance in segmenting medical images [14], it still
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requires input from human experts. This dependence on
manual input limits the efficiency and scalability of the
segmentation process.

To overcome this challenge, we propose a self-
promoting segmentation model that generates automatic
input prompts by utilising the pre-trained capabilities of
the YOLOv12 model. Our approach aims to enhance the
accuracy and computational efficiency of tumour
segmentation by combining YOLOv12 bounding box
tumour predictions with the SAM 2 segmentation task. In
this work, we use bounding box coordinate data to train
the SAM 2 segmentation model. This approach
significantly decreases annotation time compared with
previous methods that required manual segmentation of
ground truth masks for training. By using bounding-box
annotations, our model can achieve a high degree of
segmentation accuracy with less manual effort, making it
more practical for large-scale applications.

The suggested prompt-based brain tumour
segmentation model makes the following important
contributions.

- In this work, we present a new hybrid model by
integrating YOLOV12, a recently powerful object detector,
with the SAM 2 framework for specifically performing
accurate and fully automated brain tumour segmentation
of MRI scans. With this integration, YOLOv12 takes
advantage of its real-time tumour localization strength,
while SAM 2 takes advantage of its high-resolution
segmentation strength, resulting in a complete solution for
both detection and segmentation tasks.

- In this research, we present a self-prompt-based
mechanism. This work uses bounding boxes produced by
YOLOv12 as prompts for segmentation, adequately
achieving high accuracy with only bounding-box
annotations, thereby reducing annotation time and the
expertise needed.

- In this work, the YOLOv12 model is used to detect
tumour regions with bounding boxes. Then the bounding
boxes are used to guide SAM 2 in segmenting the tumour
within the localized area only. This type of targeted
segmentation method allocates computational resources to
the more important regions, thereby making the model
both efficient and accurate.

- The SAM 2 component leverages bounding boxes
produced by YOLOv12 to approximate context-aware and
precise segmentation through a transformer architecture
that generalizes well to different tumour shapes, sizes,
and localizations. This collaboration successfully
addresses the problem of segmenting tumours with
uneven edges, overlapping structures, or low contrast.

- We use the brain tumour dataset from Figshare to
assess our suggested model. The hybrid model is also
compared with leading segmentation methods based on
important metrics, demonstrating that our proposed model
is clinically applicable and reliable.

2. EXISTING WORKS

2.1. Related Works

In 2000, Naser et al. [15] designed a CNN-based model
using a U-Net architecture for tumour segmentation and
detection. The proposed method was capable of tumour
segmentation, detection, and classification in a single
pipeline using the same MRI data. A tumour classification
model was developed using a densely connected neural
network classifier, based on a tumour grading model with
transfer learning using VGG16 weights. Complete
automation becomes possible through this integrated
system, which achieves simultaneous processing to
improve tumour analysis workflow efficiency.

In 2003, Yousef et al. [16] designed a model based on
the lightweight U-Net for brain tumour segmentation. The
proposed model uses a much smaller number of trainable
parameters (2 million) than the original U-Net (7.7
million). The new model is much more efficient in locating
the brain tumour with fewer parameters.

In 2024, Mithun et al. [17] proposed a model based on
the YOLONAS deep learning technique for brain tumour
classification using a segmentation approach. The
proposed hybrid technique involves the combination of an
encoder-decoder network with the pre-trained
EfficientNet-B3, which acts as the encoder for this model.
This architecture aims to improve the segmentation of
MRI images by efficiently detecting the features of brain
tumours. This approach encompasses several stages,
namely image pre-processing, segmentation, and
classification.

In 2022, Ottom et al. [18] presented a new Znet
framework for the segmentation of 2D brain tumours. It
employs deep neural networks as well as data
augmentation strategies. Znet has been designed based on
skip connections and an encoder-decoder architecture.
The Znet model has exhibited excellent results with a Dice
coefficient on an independent testing dataset.

In 2025, Ahsan et al. [19] designed a model combining
YOLOv5 with 2D U-Net for multiclass tumour analysis. In
this model, YOLOv5 was used for detecting tumour
localization, and U-Net was used for segmenting the
tumour. This model decreases the amount of time needed
for diagnosis and thus facilitates early treatment.

In 2022, Sami et al. [20] proposed a modified U-Net
method. Traditional U-Net methods have errors in
accurately identifying tumours. The modified U-Net
architecture differs from the traditional U-Net
architecture. Compared to the original U-Net, the modified
U-Net has six convolutional layers, replaces 3x3 filters
with 5x5 filters, uses 2,048 feature maps, and reduces the
feature maps to 8x8 in the encoding part. These
modifications allow the model to increase feature map
dimensionality, resulting in improved performance.

In 2024, Saifullah et al. [21] presented a CNN with a
transfer learning model. In this model, DeepLabv3+ with a
ResNet18 backbone was used for tumour segmentation.
DeepLabv3+ is highly effective in semantic segmentation,
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which is essential for accurately defining object
boundaries in medical images. ResNet18 serves as the
feature extractor (backbone) within DeepLabv3+. This
strategic fusion improves performance in the challenging
task of tumour segmentation.

In 2023, Nizamani et al. [22] introduced a deep
learning model that combined the U-Net architecture with
a transformer model and also used advanced feature
enhancement techniques. Transformers were added to the
U-Net model to impart contextual understanding, allowing
the model to better capture the relationships between
different parts of the image, which is crucial for accurate
segmentation. Feature enhancement techniques in image
pre-processing, such as MHE, CLAHE, and MBOBHE,
were used to improve the visibility of important details.
These techniques improved tumour segmentation
accuracy.

In 2024, Zafar et al. [23] designed a hybrid deep
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learning model called Enhanced TumorNet. In this model,
YOLOv8s and U-Net are combined for improved tumour
analysis. YOLOv8s is used for rapid detection, and U-Net
is used for precise segmentation. The overall performance
of this model is improved by utilising the advantages of
both architectures.

In 2024, Kassam et al. [24] proposed a model that
combines YOLOv8 and a Segment Anything Model (SAM)
to improve the analysis of glioma tumours. The YOLOv8
model provides quick and efficient processing of MRI
images through a CNN to detect and localise potential
tumours by predicting bounding boxes, while SAM offers
precise segmentation, creating a robust and efficient
pipeline.

Table 1 presents the features and challenges of
traditional and existing brain detection and segmentation
models.

Table 1. Features and challenges of existing brain tumor detection and segmentation models.

Author Methodology Features challenges
Naser et al. U-Net+Vgg-16 1. The data imbalance was addressed by the authors 1. In this study, manually segmented tumour masks were
[15] using a weighted loss function. used as the basis for training the U-Net model.

2. The method offers a noninvasive way to characterize
lower-grade cancers, which may help with diagnosis
and therapy planning.

2. Although the U-Net is good at capturing local features,
it may struggle to capture long-range dependencies, which
could be important for accurately segmenting complex
tumour structures.

Yousef et al.
[16]

lightweight U-Net

1. Significantly reduces computational complexity.
2. The use of the cyclical learning rate(CLR) leads to a
better generalisation in segmenting brain tumors.

1. The model may not perform equally well in different
data distributions or tumour types.

Mithun et al.  |Yolo NAS 1. YOLO NAS prioritises important areas in the images |1. Some segmented images may contain small fragments
[17] using an attention method. incorrectly identified as tumours.
2. The pre-processing step includes noise reduction 2. The segmentation results depended on the HADF
using a hybrid anisotropic diffusion filtering technique, [technique.
which enhances the quality of MRI images before
analysis.
Ottom et al. Znet 1. Potentially avoids the vanishing gradient problem. |1. The Znet model has more trainable parameters
[18] 2. Potential of the architecture for clinical applications. [(44,384,833) than the U-Net model (14,788,929), which
requires higher computation.
2. The performance of Znet in other MRI sequences or
combined modalities has not yet been explored.
Ahsan et al. Yolov5+U-Net 1. YOLOvVS and 2D U-Net together produced a higher |1. The proposed method requires the training of two
[19] DSC for segmentation than 2D U-Net alone. separate models, which can be more computationally

2. Less inference time is required to detect tumors.

intensive than single model approaches.

Sami et al. [20]

Modified U-Net

1. The modified U-Net includes additional layers and
changes in filter size, which contribute to its superior
performance.

1. The modified U-Net has more layers and larger filter
sizes, which likely increases computational requirements.
2. A manual annotation mask was required to train the
model.

Saifullah et
al.[21]

Deeplabv3+ + ResNet18

1. Atrous Spatial Pyramid Pooling enhances the ability
of the model to recognise both large and small tumor
regions.

2. The excellent performance of the model in defining
tumour boundaries.

1. Computationally intensive models.
2. Its applicability in resource-constrained clinical
settings.

Nizamani et al.
[22]

U-Net+Transformer

1. Transformer-based models can effectively extract
contextual and spatial information from magnetic
resonance data, which helps in segmentation of tumors
with irregular shapes.

1. The integration of U-Nets with Transformers and
advanced feature enhancement techniques likely results in
a computationally intensive model.

Zafar et al. [23]

Yolov8’s+U-Net

1. The model is suitable for real-time applications.

1. The hybrid model that combines YOLOv8s and U-Net is
computationally intensive.

2. This model requires high-quality data to achieve optimal
performance.

Kassam et al.
[24]

Yolov8+SAM

1. This pipeline is suitable for real-time application.
2. The model provides a low inference time to detect
and segmenting tumors.

1. This supports only two-dimensional (2D) MRI tumour
segmentation.
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2.2. Research Gap

The research gaps mentioned below were found in the
literature review.

- For training, traditional segmentation algorithms, such
as U-Net and DeepLabv3+ require ground-truth masks;
however, the process of constructing these masks is
challenging because healthcare professionals must manually
annotate them. This process is time-consuming and requires
specialised radiological knowledge, restricting scalability.

- Conventional models, such as U-Net and DeepLabv3+,
attempt to segment the entire MRI image at once without
first identifying the tumour, which can reduce precision in
complex-structure tumours or noisy images.

- Slow inference times are a common problem with
conventional high-accuracy segmentation algorithms,
making them inappropriate for real-time or mobile health
applications.

- There is still much to explore regarding the potential
of combining prompt-based segmentation techniques, such
as the transformer-based SAM2, with high-performance
detection models, such as YOLOv12, in brain tumour
applications.

3. PROPOSED METHODOLOGY

Our proposed model combines two cutting-edge
algorithms, YOLOv12 and SAM 2, to efficiently identify

MR DATASET

Brainy T
Bagmantation

SANMZ MODEL

Tumor Segmented
Imagas

Fig. (1). The suggested model's workflow.

and segment brain tumours in MRI images. Initially, the
YOLOv12 model detects the location of tumours and
encircles them with bounding boxes. Subsequently, these
bounding boxes are used as input prompts for the SAM 2
model, which accurately segments the tumour using the
given bounding box coordinates (Fig. 1). A pre-trained
YOLOv12 model is used for tumour detection. This model
is selected for its remarkable accuracy and speed
performance, especially in real-time applications.

YOLOv12 uses a CNN to process MRI images. This
CNN extracts essential features from the images, and
based on these features, YOLOv12 predicts bounding
boxes around potential tumours. The coordinates of the
bounding boxes predicted by YOLOv12 are then used as
input for the SAM 2 model. To handle the output of
YOLOV12 in our environment, a conversion mechanism is
created that translates the coordinates of the bounding
boxes into spatial prompts that SAM 2 can handle
properly. Bounding boxes are rescaled to fit the input
dimensions of SAM 2, and other preprocessing operations
are applied to handle tumours with irregular or
overlapping boundaries. This smooth transition between
the detection and segmentation processes reduces the
dependence on manual annotations and increases both
precision and efficiency. These coordinates serve as
prompts for SAM 2, guiding its segmentation process.
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The SAM 2 model, lightweight and highly accurate,
refines YOLOv12's detection results. It uses bounding-box
coordinates to perform detailed segmentation, delineating
exact tumour boundaries.

3.1. Dataset

The dataset used in this study was the publicly
available Brain Tumour MRI Figshare dataset, originally
hosted on FigShare and also available on Kaggle for
accessibility [25]. It contains 3,064 T1-weighted contrast-
enhanced MRI images and their corresponding binary
masks. The image size of the MRI dataset was 640x640.
The dataset was divided into 2,451 training images, 307
validation images, and 306 test images. For visual
inspection, a random selection of MRI images was chosen,
as shown in Fig. (2A), to guarantee the consistency and
high quality of our data. Fig. (2B) shows these images
superimposed with the corresponding ground-truth masks.
This step is crucial to verify that the MRI images and
ground-truth masks are properly aligned for training our
prediction model. Annotation text labels are required to
train YOLOv12; therefore, the binary masks were
converted to label.txt files for training YOLOv12.

3.2, Data Augmentation

The data augmentation techniques used during the
training of the YOLOv12 model included the following:

* Blur: Applying a slight Gaussian blur with a
probability of 0.01. This enhances the model's ability to
handle motion blur or low-quality images during inference.

* MedianBlur: Using median blurring, also with a
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probability of 0.01. This alteration helps the model
manage noise or sharp edges present in the images.

* ToGray: Converting images to greyscale, with a
probability of 0.01, enabling the model to concentrate on
spatial characteristics instead of colour, which can be
advantageous when colour information is less significant
or unreliable.

* CLAHE: Improving image contrast with a probability
of 0.01, assisting the model in focusing on key features by
enhancing the visual distinctiveness of the images.

These enhancements were chosen to simulate real-
world variations in object detection tasks, such as changes
in lighting, image quality, and environmental factors that
can affect object visibility and appearance. The
augmentation objective was to decrease overfitting and
improve the models' capacity for generalization.

3.3. Demonstration of the proposed YOLOv12 for
detecting brain tumours

YOLOv12 demonstrates remarkable improvement in
the field of real-time object detection by expanding the
main concepts of the YOLO model series. YOLOv12 was
launched in February 2025 by researchers Yunjie Tian et
al. [26]. In the YOLOv12 model, attention mechanisms are
added to improve detection precision without affecting its
rapid processing capabilities. In the proposed model,
YOLOv12 is used for tumour detection with bounding
boxes. Several important changes have been introduced in
the architecture of YOLOv12 to detect objects more
accurately. The architecture of YOLOv12, presented in
Fig. (3), contains three main components [27].

(B)

Fig. (2). Sample images of the dataset: (A) MRI images and (B) corresponding ground-truth masks.
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Fig. (3). Architecture of YOLOv12

3.3.1. Backbone

YOLOv12 uses a Residual Efficient Layer Aggregation
Network (R-ELAN) as its backbone. This network is
designed with deeper residual connections to improve
feature extraction and reuse. It uses 7x7 separable
convolution layers to capture spatial context while limiting
the number of trainable parameters. Advanced
convolutional blocks, which are key components of the R-
ELAN, are employed in the backbone to enhance feature
extraction while maintaining computational efficiency
[28]. These strategies improve performance without
increasing computational overhead. By using these
lightweight operations with higher parallelization in the
backbone, YOLOv12 achieves faster processing speeds for
real-time object detection.

A novel convolutional block introduced by YOLOv12
aims to reduce the complexity of the operation and
increase parallelism, allowing it to perform better than its
previous versions. These blocks are divided into a
sequence of smaller kernels, which can be represented by
Eq.(1)

D

Where F,, is the output featuremap, W, is the
convolutional filter,F, is the input feature

Funt =E?=J_H"E*Fm+bf

Instead of using a few larger convolutions, YOLOv12
processes information more quickly by distributing the
computing among many compact convolutions.
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3.3.2. Neck

YOLOv12 connects its backbone to the head through
the neck. It also incorporates multi-scale features from
various regions of the network. An area-attention
mechanism helps the model focus on challenging details in
the image. The area attention builds on the FlashAttention
network, which significantly reduces memory and
computational costs. It aggregates information from
multiple scales, refines it, and then passes it to the head
for predictions. The process of the attention operation in
the neck is described mathematically in Eq. (2).

Attention(R, P, V) = softmax (R—%] v @
]

Where R, P, and V are query, key, and value matrices,
and is the dimensionality of the key.

3.3.3. Head

In YOLOvV12, the head receives information from the
neck and generates the final outputs, such as the
bounding box coordinates and the class of each box. It
uses loss functions that balance localization and
classification objectives, resulting in improved overall
detection performance. Both the loss functions and the
prediction pathways are designed for fast and efficient
operation in real-time applications. YOLOv12 may employ
an extended version of the typical YOLO-style loss
function, which is mathematically represented by Eq. (3).

L= Ao ZE =22+ (G =) + A D6 —C) +- @
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Wherex % ¥. and ¢ denote predicted,bounding box
coordinates,and confidence,respectively.

These architectural components work together to
achieve a balance between computational efficiency and
detection accuracy. YOLOv12 also introduces multiple
model versions (eg, 12n, 12s, 12m, 12x), allowing users to
prioritise speed or accuracy based on their specific
requirements.

3.4. Demonstration of the proposed SAM2 model for
Detecting Brain Tumour Segmentation

Segment Anything Model (SAM) is a foundation model
designed for image segmentation that can be initiated
through prompts [29]. SAM 2 was created for prompt-
based visual segmentation in both images and videos,
expanding SAM's capabilities to include the video domain.
SAM 2 demonstrates better performance in medical image
segmentation while being significantly faster than the
original SAM [30]. The proposed hybrid model employs
SAM 2 for segmenting brain tumours, using the input
prompt derived from YOLOv12's brain tumour detection
with a bounding box, as shown in Fig. (4). SAM 2 [31]
contains the following three components for image
segmentation.

3.4.1. Image Encoder

SAM 2 uses a Hiera image encoder pre-trained with
MAE (Masked Autoencoder). For single images, this
encoder processes the input and provides unconditioned
tokens (feature embeddings) that represent the spatial and
semantic details of the image.

-} =
w Lir} =
& m 2
= o __ Memory o Mask ] - Memon
- = Attention Detector G Bank
- i -
= = E_
[umor
l'umor Detected Segmented
YOLOVI2  With Bounding Box | Prompt Output
Model Encoder

|

Mask

Fig. (4). SAM 2 Architecture
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3.4.2. Prompt Encoder

The prompt encoder is designed to handle different user
inputs, such as points, boxes, or text, to guide the
segmentation process. It interprets these prompts and
transforms them into a feature space corresponding to the
image features derived by the image encoder.

3.4.3. Mask Decoder

The mask decoder uses two-way transformer blocks to
update prompt and image embeddings. Its role is to combine
the features from the prompt encoder and the image encoder
to produce the optimal segmentation prediction. The two-way
transformer blends these features and incorporates an IoU
head to assess the quality of the segmentation mask.

3.5. Model Training, Fine-Tuning, and Transfer
Learning

The SAM 2 models were used in their pre-trained zero-
shot large (ViT-L) versions, utilising default settings for
inference without any fine-tuning or training. The input
prompts for SAM 2 were generated by YOLOv12. Thus,
only the YOLOv12 model was trained to identify brain
tumours, while the SAM 2 model remained frozen and was

used solely for segmentation tasks. This strategy leverages
YOLOv12's detection process and relies on the pre-trained
segmentation capabilities of SAM 2 without updating its
original weights. The fine-tuning of the hyperparameters
of the YOLOv12 model is presented in Table 2.

4. RESULTS AND DISCUSSION

4.1. Environmental Setup

The experiments were conducted using the Google
Colab Pro+ platform, which provides a GPU-accelerated
environment. The hardware configuration included an
NVIDIA Tesla T4 GPU, offering 15,360 MiB of dedicated
memory. The system was configured with NVIDIA drivers
version 550.55.17 and CUDA version 13.4. The back-end
environment of Google Colab was based on Ubuntu 20.04
and utilised Python 3.10.12.

4.2. Metrics

To evaluate the quality of the suggested model
segmentation, we employed pixel-level metrics including
accuracy, Dice coefficient, IoU, precision, recall, and F1
score. Table 3 represents the definitions of the metrics.

Table 2. YOLOv12 Model Configuration and Fine-Tuning Using the Hyperparameter Setup.

S. No. Parameter Setting

1 Model Architecture YOLOv12m (497 layers, 2,519,859 parameters, 6.0 GFLOPs)

2 Transferred Weights 499/499 items transferred from pre-trained weights

3 Dataset Figshare Brain Tumour MRI dataset (3,064 images)

4 Data Split 80:10:10

5. Pre-processing: Data Augmentation Blur, MedianBlur, ToGray, CLAHE (probabilities = 0.01 each), CopyPaste (0.1), RandAugment
6 Optimizer AdamW (learning rate = 0.002, momentum = 0.9)

7 Batch Size 16

8 Input Image Size 640x640 pixels

9 Epochs 75

10.  |Optimizer Configuration

Weight decay: 0.0005 (128 groups), 0.0 (121 groups), bias: 0.0 (127 groups)

11. Loss Functions

CIoU loss (bounding box regression), focal loss (classification), and Cross-entropy (segmentation
refinement)

12.  |Bounding Box to SAM2 Prompt Conversion

YOLOv12 bounding boxes (xmin,ymin,xmax,ymax) normalised to SAM2 input resolution.

13 Baselines Compared

U-Net, DeepLabv3+, YOLOv8+SAM

Table 3. Evaluation Metrics.

S.No Metrics Definition
1. Dice Score De(Om pzrey —=2n DT
0,, = Original Mask
PEPS™ — Segmented Mask
2. Accuracy T | [32]
- ee+ ff+nn+mm
ee: True Positives, ff: True Negatives, nn: False Positives, mm: False Negatives
3. Precision ee
Prec =———
eg+mnn
4. Recall R ee
eca =
ee +mm
5. F1-Score v 2 (Prec - Reca)
" (Prec + Reca)
6. 10U gy _ (O VBRT)
100(0, PE5™) = G U oy
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4.3. Pseudocode for tumour segmentation

Pseudocode for tumour Segmentation is presented in
Table 4. Combining YOLOv12 detection and SAM 2’s
segmentation allows the proposed framework to achieve
accurate  tumour  segmentation. Initially,  the
YOLOv12 TUMOR DETECTION function processes the
medical image using the YOLOv12 model and pinpoints

Table 4. Pseudocode for brain Tumor segmentation.

Pasunoori et al.

potential tumour regions, along with information about
their class identifiers, confidence score, and the
coordinates of the bounding box. Each detected region of
interest (ROI) is then passed to the SAM 2 segmentation
pipeline. For each bounding box, the
SAM2 SEGMENTATION function is run to produce a
detailed segmentation mask by setting binary values over
the region of the bounding box.

S.No Code
1. Function HYBRID TUMOR SEGM(image, yolovl2 model, sam2 model)
2. Detections YOLOv12 TUMOR DETECTION(image, yolovl2_model)

3. Tumor info <[]

4. For Each detection in the detections: do

5. Class_id detection[“class_id-tumour”]

6. Confidence detection [“confidence Score"]

7. Bounding box « detection["bounding box coordinates"]
8. Predictor INIT_SAM2(sam2_model)

9. Predictor.set_image(image)

10. Segmentation mask SAM2 SEGMENTATION(predictor, bounding box)
11. Tumor infom.append({

12. "Class_id": class _id-tumour,

13. "Confidence": detected confidence score,

14. "Bounding box": detected bounding box,

15. "Segmentation mask": segmentation mask

16. D

17. End for

19. Return tumor infom

20. End function

21. Function YOLOv12 TUMOR DETECTION(image, model)
22. Results model(image)

23. Extract detections with class id, confidence, bounding box
24. Return a list of detections

25. End function

26. Function INIT SAM2(model)

27. Predictor SamPredictor(model)

28. Return predictor

29. End function
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Table 4) cont.....

30. Function SAM2_SEGMENTATION(predictor, bounding_box)

31. X_min, y_min, X max, y max bounding box

32. Box [x min, y min, x max, y max]

33. Masks, , _predictor.predict(box=box[None, :])

34. Segmentation _mask < (masks[0] > 0.5)

35. Return segmentation_mask

36. End function

4.4. YOLOvV12 Model Outcomes of Tumour Detection

Various performance metrics of tumor detection using
YOLOv12 model are shown in Fig. (5), highlighting several
aspects of the model during training and validation phases
over 75 epochs. During the training phase, both box loss
and classification loss decreased as the number of epochs
increased, indicating progressive improvement in the
model’s classification capabilities. The dfl loss is employed
to increase the accuracy of bounding-box predictions,

train/box_loss

train/cls_loss

particularly for objects that are difficult to differentiate or
closely resemble each other. During the model training,
df loss decreased as the number of epochs increased,
demonstrating that the model accurately predicted the
bounding boxes. Durning the validation, box loss, cls_loss,
and dfl loss decreased sharply as the number of epochs
increased. Finally, our YOLOv12 model achieved a
precision of 90.28%, a recall of 86.66%, and an mAP50 of
92.9%. Thus, the resulting model nearly perfectly
predicted tumour detection.

train/dfl_loss

2.5 4
—e— results 1.7 -
1.6 smooth
1.6 4
1.4 1.5 1
1.2 - 1.4 -
1.3
e 1.2
0.8 -, : = 1.1, ;
O 50 S50 0 S0
val/box loss valfcls loss val/dfl_loss
p 200 - 547
3.0
150 - a
2.5
100
2.0 - 3
S0 - !
1.5 4 2
1.0 e :

20

(4)

O+

20

Fig. 5 contd.....
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Fig. (5). Performance metrics of the YOLOv12 model. (A) Loss curves; (B) Precision, recall, and mAP50 curves.

The confusion matrices associated with the suggested utilized to pinpoint the highest and lowest performing
YOLOv12 model are graphically depicted in Fig. (6) using classes, providing a comprehensive understanding of the
the validation data. The normalised confusion matrix is model's performance across various categories.

Confusion Matrix Normalized

-_*_—H_‘__'—-____-‘H

N\

Tumor

Predicted

Background

Tumor Background

\ True -

Fig. (6). YOLOv12 model Normalised Confusion Matrix.
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4)
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Fig. (7). Validation and prediction batches for tumour detection (A) validation batch and (B) predication batch.

presents a visual comparison between the validation
batch (Fig. 7A) and the prediction batch (Fig. 7B) generated
by the YOLOv12 model. These batches are designed to
improve computational efficiency and increase inference
speed, facilitating the detection of tumors across various
images. The validation images display tumor locations on the
original images, whereas the predicted images show the
model’s output after training. From this comparison, it can
be concluded that YOLOv12 exhibits exceptional tumor
detection performance, as evidenced by the accurate
localization of tumors with bounding boxes and the
corresponding confidence scores, closely aligned with the
validation batch.

4.5. Results of the Hybrid Proposed Model

The YOLOvV12-SAM 2 framework was evaluated by
comparing the predicted segmentation masks with the
corresponding ground truth masks. In Fig. (8), several test
cases are presented to illustrate the model’s performance
in segmenting brain tumours. The figure shows that the
predicted masks closely match the ground truth masks,
indicating that our system can accurately and effectively
segment brain tumors.

Segmentation quality was evaluated using key
performance metrics, including Dice Coefficient (DSC),
Intersection over Union (IoU), accuracy, recall, precision,
and F1 score. The segmentation results are illustrated in
Fig. (9) using these metrics. Our model achieved an
accuracy of 99.73%, a recall of 89.06%, a precision of
94.75%, a DSC of 91.8%, an F1 score of 91.82%, and an
IoU of 84.87%. These results demonstrate that the
proposed model provides highly accurate and reliable
segmentation of brain tumours.

The results, obtained using a fixed split of 2,451
training images, 307 validation images, and 306 test
images, show consistent performance across multiple
evaluation metrics. In addition to accuracy and Dice
coefficient, other measures such as precision, recall, F1
score, and IoU were also calculated and are presented
with their mean, median, and standard deviation to reflect
both central tendency and variability, as shown in Fig.
(10). This comprehensive assessment confirms the
robustness of the developed model and provides further
confidence in its generalizability.
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ariginal Image Fredicted Mask Ground Truth Mask

Predicted Mask Ground Truth Mask

Fig. (8). Some test cases of ground truth mask vs. predicted mask.
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Fig. (9). Proposed model metrics Vs. performance.
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Fig. (10). Mean, median, and standard deviation metrics of proposed model
4.6. Heatmap overlay A heatmap overlay, which adds color to the tumour region,

. ) . can be blended on top of the original MRI image, as shown

The segmented output mask is a plain blaCk'and'Whlte in Fig. (11). This heatmap overlay helps non-technical Al

image and is separate from the original MRI scan, making users, such as doctors, quickly identify the predicted
it difficult to visualize the actual tumour area on the MRI. tumour region within the original MRI scans.

(4) (B) (®)

Fig. (11). Heatmap overlay (A) original image (B) segmented output (C) heatmap overlay
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4.7. Comparison of the proposed model with existing
models

In this section, we conduct a comprehensive evaluation
of the performance of our integrated YOLOv12-SAM 2
model in tumour segmentation. The model’s remarkable
accuracy and capability in segmenting tumours are
underscored by performance metrics, including a Dice
coefficient of 91.8% and an accuracy of 99.7%. Our model
outperforms alternative techniques, such as U-Net,
DeepLabv3+, and other YOLO models, as indicated in
Table 5. The Dice coefficient of 91.8% reflects a precise
spatial overlap between the predicted masks and the
ground-truth masks. Additionally, the 99.7% accuracy
score highlights the model’s reliable ability to detect and
segment tumours. YOLOv12 provides accurate localisation
through bounding boxes, which are then used as prompts
for SAM 2 to enable segmentation in regions with complex
tumour boundaries. This combination of complementary
detection (YOLOv12) and segmentation (SAM 2)
mechanisms leads to more robust results, with fewer false

Pasunoori et al.

positives and better generalisation across a wide range of
MRI scans.

Although alternative methods, such as YOLONAS,
YOLOvV8 + U-Net, DeepLabv3+ + ResNet18, 2D-UNet, and
Znet demonstrate commendable performance metrics, our
proposed approach consistently surpasses them in terms
of the Dice coefficient, highlighting its superior accuracy
in tumour segmentation. The effectiveness of our method
is particularly evident when compared to Znet, producing
comparable outcomes in both accuracy and Dice
coefficient. The high accuracy and Dice score demonstrate
the model’s precision in segmenting and delineating
tumour regions. These findings indicate that our model is
a powerful tool in neuroradiology, capable of diagnosing
brain tumours with greater precision, especially in
complex cases that are challenging for human evaluation.

Fig. (12) represents the comparative performance of
YOLOvV12+SAM2 and existing state-of-the-art models in
terms of precision and Dice coefficient.

Table 5. Performance comparison of existing DL Models with the Proposed Model.

S.No. Model Accuracy DICE Score
1. 2D-Unet [34] 92.16 81.2
2. MSD [35] 84.69
3. 3D-Unet [36] - 86
4. YOLONAS [17] 96.20 85.81
5. Znet [18] 99.55 91.58
6. YOLOV5 + 2D U-Net [19] - 88.1
7. Modified U-Net [20] 99.5 85.02
8. Deeplabv3+ +ResNet18 [21] 97.48 91.2
9. Yolov8+U-Net [23] 98.6 -
10. Yolov8+SAM [24] - 79
11. Proposed Model 99.7 91.8
| ACCuracy
| Dice Score
100 #9.55 9T 48 9.7
B2.16 §1.88 912 1.8
ui2
B0 - e
g
[7]
]
m 60 -
(%)
(=
E
40 4
-
o
20 -
0 | ——l 1 - - - v
20-Unet Zrest Deeplabvds  Proposed Mods|

Deep Leaming Models

Fig. (12). Comparative performance of YOLOv12+SAM?2 and existing state-of-the-art models
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Fig. (13). Inference times of the tumour segmentation model.

4.8. Detection time

The evaluation of the models was carried out on a
dataset comprising 91 frames, each with an image
dimension of 640 x 640 pixels. (Fig. 13) represents the
inference time for different models. The inference time for
the 3D U-Net model was approximately 2 minutes to
complete the tumour segmentation process, while the
YOLO + SAM model required 15 to 25 seconds. In
contrast, our proposed model required only 40-45
milliseconds to segment the tumour. Table 6 shows a
comparison of inference times for different state-of-the-art
models. Due to its significantly reduced inference time,
the YOLOv12 4+ SAM 2 model was better suited for
practical MRI brain tumour segmentation applications,
providing faster and reliable outcomes during real-time
surgical procedures.

Table 6. Inference Time of different deep learning
Models.

S.No Model Inference Time(sec)
1. 3D U-Net [37] 120

2. YOLO+SAM [24] 25

3. Proposed Model 0.045
CONCLUSION

In this paper, we presented a self-prompting brain
tumour segmentation model that combines the advantages of
SAM 2 and YOLOv12 for real-time brain tumour detection
and segmentation. Our method overcomes the drawbacks of
manual input prompts by using YOLOv12’s pre-trained
features to produce bounding box predictions, which SAM 2
then uses for precise segmentation. Through extensive
experiments with brain tumour datasets, we showed that our
model outperforms current state-of-the-art techniques. The
notable enhancements in segmentation accuracy, along with
the decreased requirement for detailed ground-truth masks,
underscore the practicality and efficiency of our approach for

large-scale applications. The model achieved a DICE score of
91.8%, an accuracy of 99.7%, and an inference time of 45
milliseconds, demonstrating strong capability for efficient
and effective tumour segmentation. This advancement could
significantly impact the field of tumour surgery, as
incorporating this model with an intraoperative MRI (ioMRI)
system may lead to enhanced patient outcomes and more
successful surgical procedures. To achieve clinical
translation, the data should be revalidated with radiologists
to further confirm the validity of the segmented outputs.
Furthermore, practical issues, such as hardware limitations
and inference lag, must be addressed prior to integration into
radiology workflows. Future steps toward deployment will
thus require an iterative approach of testing with clinical
specialists to reinforce real-world applicability.

LIMITATIONS AND FUTURE WORK

This model performed better on large or regularly
shaped tumours, but the dataset used may introduce
biases due to limited diversity in patient populations and
MRI acquisition conditions. Furthermore, the current
evaluation is restricted to conventional MRI sequences,
which may limit the generalisability of the results to other
imaging modalities and tumour subtypes. The clinical
applicability and reliability of the proposed model in
practical diagnostic settings could be further enhanced by
diversifying and expanding the dataset to include
multimodal and heterogeneous magnetic resonance
images. Additionally, incorporating radiologist feedback
loops would allow continuous refinement of the model to
better align with expert clinical practice.
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