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Abstract: Public-health reports sometimes leave out confidence intervals when data are presented for an entire popula-
tion. A rationale cited for this practice is that population statistics are measurements rather than estimates; hence there is 
no need to consider random error because the statistics show exactly what occurred. We argue that this reason does not 
justify leaving out interval estimates. Targeting intervention in areas with high disease rates can be justified only on the 
assumption that the excess would continue in those areas; in that case, at the very least, we need to allow for random fluc-
tuations over time. Thus, we recommend that interval estimates be reported even when the entire population is observed. 
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INTERVAL ESTIMATES FOR POPULATIONS 

 Confidence intervals are used in public-health practice to 
indicate the degree of uncertainty in estimates due to random 
error. This makes intuitive sense when estimates are based 
on data taken from a sample of a larger population, because 
relations in the sample are unlikely to mirror relations in the 
true population exactly, even when sampling is random [1]. 
Some error – random error, at the very least – is likely to 
occur. 

 However, official reports sometimes leave out confidence 
intervals when data are presented for an entire population. 
This can be justified when case numbers are so large that 
random error is negligible (e.g., as in large national summa-
ries [2, 3]). With smaller numbers, however, they are some-
times omitted on the grounds that the observed rates are 
measurements rather than estimates for the population; hence 
there is no need to consider random error because the statis-
tics show exactly what occurred in the population. [4]  

 We argue that this reason does not justify leaving out 
interval estimates. For example, targeting intervention in 
areas with high disease rates can be justified only on the as-
sumption that the excess would continue in those areas; in 
that case, at the very least, we need to allow for random fluc-
tuations over time. Those fluctuations can be considerable 
even when the number of cases seems large, and confidence 
intervals show the minimum uncertainty needed for applica-
tions. We thus recommend interval estimates be reported 
even if the entire population is observed without selectivity  
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or error. Existence of the latter problems only underscores 
the need for interval estimation. 

WHY CONFIDENCE INTERVALS SHOULD BE A 
MINIMAL REQUIREMENT 

 Suppose we knew the exact population size of an admin-
istrative region, and the exact number of motor vehicle 
deaths last year in the region. We could then calculate the 
exact mortality rate from motor vehicle accidents last year. 
Nonetheless, when acting as public-health investigators, pol-
icy makers, or insurance underwriters, we would not be pri-
marily interested in what happened in last year’s population. 
Instead, we would want to know what will happen in this 
year’s population, and the next year’s, because those would 
contain the events we could influence. We gather population-
based statistics retrospectively but use them to make gener-
alizations about current and future situations in populations 
we believe to be similar. If alcohol-related motor vehicle 
accidents were an important cause of death last year, we 
might strengthen drunk-driving laws this year, expecting the 
trend to continue. If men were much more likely to die in car 
wrecks than women last year, we will target interventions, 
such as advertising campaigns, to them in the hopes of pre-
venting deaths in the future.  

 Even if there is no fundamental change in underlying risk 
factors in the population, rates and trends are likely to differ 
somewhat this year from last, as some events randomly oc-
cur more often – and others less often – than they did last 
year. That why we would want to judge how much they are 
likely to differ before we can plan or set policy. A glance at 
the confidence limits will indicate a minimal range for rea-
sonable possibilities. Did unlikely events which by chance 
occurred last year skew our statistics? If so, then even 
though our observations show exactly what happened last 
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year, they will fail to guide us accurately about what will 
happen this year. Is it realistic to expect that even though last 
year’s mortality rates were higher than the previous year’s, 
the trend could disappear or even be reversed this year? Or is 
this trend likely to remain largely intact? Similar questions 
can be asked of observed disease clusters. Confidence inter-
vals help caution answers to such questions.  

 As an example, published rates of motor vehicle mortal-
ity for the District of Columbia (DC) went from 9.2 per 
100,000 in 2002 to 10.4 per 100,000 in 2003, a 13% in-
crease. Interpreting such data without recognition of the in-
herent uncertainties might lead one to infer that there is an 
upward trend in the rate. In fact, the rate dropped the follow-
ing year (2004) to 7.6 per 100,000, a 27% decrease, suggest-
ing that the 2003 increase may have reflected only random or 
other haphazard variation (e.g., adverse weather). In such 
circumstances, the use of confidence intervals to reflect such 
nonsystematic variation may help prevent premature conclu-
sions [5]. 

 If we do not indicate the uncertainty in our observations 
when they are used to make predictions, our efforts to aid 
research and policy may be compromised. Public health 
policies are created by generalizing what happened in one 
population to another supposedly similar population. But we 
readily recognize that random events in the first population – 
a lightning strike, a hurricane – may not occur in the second, 
and vice versa. Though we may observe a population in its 
entirety, our study is still finite, limited in the number of 
people it contains and the time during which we observes 
them. Many events that vary across persons and time, includ-
ing random ones, will affect our observations.  

 Random fluctuations may be thought of as the variation 
due the myriads of unaccounted-for factors that affect indi-
viduals but are not systematically related to the aggregate 
measures we estimate. To account for such fluctuations, we 
might view a population as a sample of a much larger popu-
lation encompassing other populations and future times of 
interest. With this perspective, sampling error is still present 
even when we observe an entire population, since our ulti-
mate goal is to make inferences about these other popula-
tions and times. We thus need confidence intervals to give us 
a sense of how vulnerable our extrapolations are to random 
variations across these other populations and times.  

 Even if we do not intend observations from our data to be 
generalized to other populations, we cannot control how oth-
ers will use our published data. Thus, when presenting rates 
and rate comparisons, confidence intervals provide important 
information for judging the reliability of these observations 
for planning and policy formation. These intervals can reveal 
important uncertainty even if the number of events seems 
large. For example, with 100 events over a year in a region 
of size 100,000, a rough 95% confidence interval for the rate 
per 100,000 under a Poisson model1, p. 242 would be 
100±1.96(100)½ ≈ 80 to 120, spanning a 1.5-fold range.  

BIAS AND EXTRAPOLATION ERROR 

 There are important cautions that are present in all set-
tings, and are not dealt with by confidence intervals. In fact,  
 

the term “confidence interval” is misleading in both a narrow 
technical sense and a broad pragmatic sense. Technically, 
“confidence” does not refer to the probability that the target 
parameter of interest is in the interval [1], even though most 
users seem to interpret it that way (it instead refers to the 
percentage of times an interval constructed by the same 
method would contain the parameter across hypothetical 
unlimited repetitions of an experiment in which the only 
error is random). But even if we leave this technical distinc-
tion aside, we have to confront the fact that our estimates are 
subject to nonrandom errors. These nonrandom errors can be 
broadly divided into two types:  

1) Internal errors (also known as biases) such as misdiagno-
sis, underreporting, refusal bias, and confounding, which 
lead to errors in our estimates even if they are applied only to 
the population in our study; and  

2) Extrapolation (generalization) errors, which arise when 
the populations or times of interest differ in relevant ways 
from the population we actually studied. 

 With either type of nonrandom error, we should not be 
confident that the true rate or ratio (let alone any extrapola-
tion) falls within the confidence interval, because the interval 
does not account for errors other than random ones. In par-
ticular, when nonrandom errors are likely to be present, con-
fidence intervals do not reflect the uncertainty we should 
have – thus generating overconfidence in the estimates. In 
these settings the intervals should at least be accompanied by 
some warning that they account only for random error (and 
only for single comparisons at that). Such cautions are most 
important when the upper and lower confidence limits are 
close together (i.e., the confidence interval is narrow), for 
then the confidence interval is most likely to generate over-
confident projections.  

CONCLUSION 

 There are many sophisticated methods for accounting for 
random error in prediction, including shrinkage and ma-
chine-learning algorithms [6]. There are also sophisticated 
methods for expanding and shifting the interval estimate to 
account for nonrandom errors [7]. Our point here, however, 
has been to explain why, in the vast majority of settings, at 
least confidence intervals are needed even when one has 
captured an entire population in a study. The rationale for 
surveillance and reporting is to make projections to future 
events and possibly action on those projections. As a conse-
quence, confidence intervals represent a minimal accounting 
for the uncertainty that is present even in ideal situations: 
Uncertainty due to random error.  
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